Working-with-Datas-and-Times-in-Python

1. Dates and Calendars

1.1 Dates in Python

1.2 Which day of the week?

Hurricane Andrew, which hit Florida on August 24, 1992, was one of the costliest and deadliest hurricanes in US history. Which day of the week did it make landfall?

Let’s walk through all of the steps to figure this out.

Instruction

  • Import date from datetime
  • Create a date object for August 24, 1992.
  • Now ask Python what day of the week Hurricane Andrew hit (remember that Python counts days of the week starting from Monday as 0, Tuesday as 1, and so on).
在这里插入代码片

1.3 How many hurricanes come early?

In this chapter, you will work with a list of the hurricanes that made landfall in Florida from 1950 to 2017. There were 235 in total. Check out the variable florida_hurricane_dates, which has all of these dates.

Atlantic hurricane season officially begins on June 1. How many hurricanes since 1950 have made landfall in Florida before the official start of hurricane season?

Instruction

  • Complete the for loop to iterate through florida_hurricane_dates.
  • Complete the if statement to increment the counter (early_hurricanes) if the hurricane made landfall before June.
在这里插入代码片

1.4 Math with dates

1.5 Subtracting dates

Python date objects let us treat calendar dates as something similar to numbers: we can compare them, sort them, add, and even subtract them. This lets us do math with dates in a way that would be a pain to do by hand.

The 2007 Florida hurricane season was one of the busiest on record, with 8 hurricanes in one year. The first one hit on May 9th, 2007, and the last one hit on December 13th, 2007. How many days elapsed between the first and last hurricane in 2007?

Instruction

  • Import date from datetime.
  • Create a date object for May 9th, 2007, and assign it to the start variable.
  • Create a date object for December 13th, 2007, and assign it to the end variable.
  • Subtract start from end, to print the number of days in the resulting timedelta object.
在这里插入代码片

1.6 Counting events per calendar month

Hurricanes can make landfall in Florida throughout the year. As we’ve already discussed, some months are more hurricane-prone than others.

Using florida_hurricane_dates, let’s see how hurricanes in Florida were distributed across months throughout the year.

We’ve created a dictionary called hurricanes_each_month to hold your counts and set the initial counts to zero. You will loop over the list of hurricanes, incrementing the correct month in hurricanes_each_month as you go, and then print the result.

Instruction

  • Within the for loop:
  • Assign month to be the month of that hurricane.
  • Increment hurricanes_each_month for the relevant month by 1.
在这里插入代码片

1.7 Putting a list of dates in order

Much like numbers and strings, date objects in Python can be put in order. Earlier dates come before later ones, and so we can sort a list of date objects from earliest to latest.

What if our Florida hurricane dates had been scrambled? We’ve gone ahead and shuffled them so they’re in random order and saved the results as dates_scrambled. Your job is to put them back in chronological order, and then print the first and last dates from this sorted list.

Instruction

  • Print the first and last dates in dates_scrambled.
  • Sort dates_scrambled using Python’s built-in sorted() method, and save the results to dates_ordered.
  • Print the first and last dates in dates_ordered.
在这里插入代码片

1.8 Turning dates into strings

1.9 Printing dates in a friendly format

Because people may want to see dates in many different formats, Python comes with very flexible functions for turning date objects into strings.

Let’s see what event was recorded first in the Florida hurricane data set. In this exercise, you will format the earliest date in the florida_hurriance_dates list in two ways so you can decide which one you want to use: either the ISO standard or the typical US style.

Instruction

  • Assign the earliest date in florida_hurricane_dates to first_date.
  • Print first_date in the ISO standard. For example, December 1st, 2000 would be "2000-12-01".
  • Print first_date in the US style, using .strftime(). For example, December 1st, 2000 would be “12/1/2000” .
在这里插入代码片

1.10 Representing dates in different ways

date objects in Python have a great number of ways they can be printed out as strings. In some cases, you want to know the date in a clear, language-agnostic format. In other cases, you want something which can fit into a paragraph and flow naturally.

Let’s try printing out the same date, August 26, 1992 (the day that Hurricane Andrew made landfall in Florida), in a number of different ways, to practice using the .strftime() method.

Instruction 1
Print andrew in the format ‘YYYY-MM’.

在这里插入代码片

Instruction 2
Print andrew in the format ‘MONTH (YYYY)’, using %B for the month’s full name, which in this case will be August.

在这里插入代码片

Instruction 3
Print andrew in the format ‘YYYY-DDD’ (where DDD is the day of the year) using %j.

在这里插入代码片

2. Combining Dates and Times

2.1 Dates and times

2.2 Creating datetimes by hand

Often you create datetime objects based on outside data. Sometimes though, you want to create a datetime object from scratch.

You’re going to create a few different datetime objects from scratch to get the hang of that process. These come from the bikeshare data set that you’ll use throughout the rest of the chapter.

Instruction 1

  • Import the datetime class.
  • Create a datetime for October 1, 2017 at 15:26:26.
  • Print the results in ISO format.
在这里插入代码片

Instruction 2

  • Import the datetime class.
  • Create a datetime for December 31, 2017 at 15:19:13.
  • Print the results in ISO format.
在这里插入代码片

Instruction 3
Create a new datetime by replacing the year in dt with 1917 (instead of 2017)

在这里插入代码片

2.3 Counting events before and after noon

In this chapter, you will be working with a list of all bike trips for one Capital Bikeshare bike, W20529, from October 1, 2017 to December 31, 2017. This list has been loaded as onebike_datetimes.

Each element of the list is a dictionary with two entries: start is a datetime object corresponding to the start of a trip (when a bike is removed from the dock) and end is a datetime object corresponding to the end of a trip (when a bike is put back into a dock).

You can use this data set to understand better how this bike was used. Did more trips start before noon or after noon?

Instruction

  • Within the for loop, complete the if statement to check if the trip started before noon.
  • Within the for loop, increment trip_counts['AM'] if the trip started before noon, and trip_counts['PM'] if it started after noon.
在这里插入代码片

2.4 Printing and parsing datetimes

2.5 Turning strings into datetimes

When you download data from the Internet, dates and times usually come to you as strings. Often the first step is to turn those strings into datetime objects.

In this exercise, you will practice this transformation.

Reference

%Y 4 digit year (0000-9999)
%m 2 digit month (1-12)
%d 2 digit day (1-31)
%H 2 digit hour (0-23)
%M 2 digit minute (0-59)
%S 2 digit second (0-59)

Instruction 1

  • Determine the format needed to convert s to datetime and assign it to fmt.
  • Convert the string s to datetime using fmt.
在这里插入代码片

Instruction 2

  • Determine the format needed to convert s to datetime and assign it to fmt.
  • Convert the string s to datetime using fmt.
在这里插入代码片

Instruction 3

  • Determine the format needed to convert s to datetime and assign it to fmt.
  • Convert the string s to datetime using fmt.
在这里插入代码片

2.6 Parsing pairs of strings as datetimes

Up until now, you’ve been working with a pre-processed list of datetimes for W20529’s trips. For this exercise, you’re going to go one step back in the data cleaning pipeline and work with the strings that the data started as.

Instruction

  • Outside the for loop, fill out the fmt string with the correct parsing format for the data.
  • Within the for loop, parse the start and end strings into the trip dictionary with start and end keys and datetime objects for values.
在这里插入代码片

2.7 Recreating ISO format with strftime()

In the last chapter, you used strftime() to create strings from date objects. Now that you know about datetime objects, let’s practice doing something similar.

Re-create the .isoformat() method, using .strftime(), and print the first trip start in our data set.

Instruction

  • Complete fmt to match the format of ISO 8601.
  • Print first_start with both .isoformat() and .strftime(); they should match.
在这里插入代码片

2.8 Unix timestamps

Datetimes are sometimes stored as Unix timestamps: the number of seconds since January 1, 1970. This is especially common with computer infrastructure, like the log files that websites keep when they get visitors.

Instruction

  • Complete the for loop to loop over timestamps.
  • Complete the code to turn each timestamp ts into a datetime.
在这里插入代码片

2.9 Working with durations

2.10 Turning pairs of datetimes into durations

When working with timestamps, we often want to know how much time has elapsed between events. Thankfully, we can use datetime arithmetic to ask Python to do the heavy lifting for us so we don’t need to worry about day, month, or year boundaries. Let’s calculate the number of seconds that the bike was out of the dock for each trip.

Continuing our work from a previous coding exercise, the bike trip data has been loaded as the list onebike_datetimes.

Instruction

  • Within the loop:
    • Use arithmetic on the start and end elements to find the length of the trip
    • Save the results to trip_duration.
    • Calculate trip_length_seconds from trip_duration.
在这里插入代码片

2.11 Average trip time

W20529 took 291 trips in our data set. How long were the trips on average? We can use the built-in Python functions sum() and len() to make this calculation.

Based on your last coding exercise, the data has been loaded as onebike_durations. Each entry is a number of seconds that the bike was out of the dock.

Instruction

  • Calculate total_elapsed_time across all trips in onebike_durations.
  • Calculate number_of_trips for onebike_durations.
  • Divide total_elapsed_time by number_of_trips to get the average trip length.
在这里插入代码片

2.12 The long and the short of why time is hard

Out of 291 trips taken by W20529, how long was the longest? How short was the shortest? Does anything look fishy?

Instruction

  • Calculate shortest_trip from onebike_durations.
  • Calculate longest_trip from onebike_durations.
  • Print the results, turning shortest_trip and longest_trip into strings so they can print.
在这里插入代码片

3. Time Zones and Daylight Saving

3.1 UTC offsets

3.2 Creating timezone aware datetime

In this exercise, you will practice setting timezones manually.

Instruction 1

  • Import timezone.
  • Set the tzinfo to UTC, without using timedelta.
在这里插入代码片

Instruction 2

  • Set pst to be a timezone set for UTC-8.
  • Set dt's timezone to be pst.
在这里插入代码片

Instruction 3

  • Set tz to be a timezone set for UTC+11.
  • Set dt's timezone to be tz.
在这里插入代码片

3.3 Setting timezones

Now that you have the hang of setting timezones one at a time, let’s look at setting them for the first ten trips that W20529 took.

Instruction

  • Create edt, a timezone object whose UTC offset is -4 hours.
  • Within the for loop:
  • Set the tzinfo for trip['start'].
  • Set the tzinfo for trip['end'].
在这里插入代码片

3.4 What time did the bike leave in UTC?

Having set the timezone for the first ten rides that W20529 took, let’s see what time the bike left in UTC. We’ve already loaded the results of the previous exercise into memory.

Instruction
Within the for loop, move dt to be in UTC. Use timezone.utc as a convenient shortcut for UTC.

在这里插入代码片

3.5 Time zone database

3.6 Putting the bike trips into the right time zone

Instead of setting the timezones for W20529 by hand, let’s assign them to their IANA timezone: ‘America/New_York’. Since we know their political jurisdiction, we don’t need to look up their UTC offset. Python will do that for us.

Instruction

  • Import tz from dateutil.
  • Assign et to be the timezone 'America/New_York'.
  • Within the for loop, set start and end to have et as their timezone (use .replace()).
在这里插入代码片

3.7 What time did the bike leave? (Global edition)

When you need to move a datetime from one timezone into another, use .astimezone() and tz. Often you will be moving things into UTC, but for fun let’s try moving things from ‘America/New_York’ into a few different time zones.

Instruction 1

  • Set uk to be the timezone for the UK: ‘Europe/London’.
  • Change local to be in the uk timezone and assign it to notlocal.
在这里插入代码片

Instruction 2

  • Set ist to be the timezone for India: ‘Asia/Kolkata’.
  • Change local to be in the ist timezone and assign it to notlocal.
在这里插入代码片

Instruction 3

  • Set sm to be the timezone for Samoa: ‘Pacific/Apia’.
  • Change local to be in the sm timezone and assign it to notlocal.
在这里插入代码片

3.8 Starting daylight saving time

3.9 How many hours elapsed around daylight saving?

Since our bike data takes place in the fall, you’ll have to do something else to learn about the start of daylight savings time.

Let’s look at March 12, 2017, in the Eastern United States, when Daylight Saving kicked in at 2 AM.

If you create a datetime for midnight that night, and add 6 hours to it, how much time will have elapsed?

Instruction 1

  • You already have a datetime called start, set for March 12, 2017 at midnight, set to the timezone ‘America/New_York’.
  • Add six hours to start and assign it to end. Look at the UTC offset for the two results.
在这里插入代码片

Instruction 2

  • You added 6 hours, and got 6 AM, despite the fact that the clocks springing forward means only 5 hours would have actually elapsed!
  • Calculate the time between start and end. How much time does Python think has elapsed?
在这里插入代码片

Instruction 3
Move your datetime objects into UTC and calculate the elapsed time again.
Once you’re in UTC, what result do you get?

在这里插入代码片

3.10 March 29, throughout a decade

March 29, throughout a decadeDaylight Saving rules are complicated: they’re different in different places, they change over time, and they usually start on a Sunday (and so they move around the calendar).

For example, in the United Kingdom, as of the time this lesson was written, Daylight Saving begins on the last Sunday in March. Let’s look at the UTC offset for March 29, at midnight, for the years 2000 to 2010.

Instruction

  • Using tz, set the timezone for dt to be 'Europe/London'.
  • Within the for loop:
  • Use the .replace() method to change the year for dt to be y.
  • Call .isoformat() on the result to observe the results.
在这里插入代码片

3.11 Ending daylight saving time

3.12 Finding ambiguous datetimes

At the end of lesson 2, we saw something anomalous in our bike trip duration data. Let’s see if we can identify what the problem might be.

Instruction

  • Loop over the trips in onebike_datetimes:
    • Print any rides whose start is ambiguous.
    • Print any rides whose end is ambiguous.
在这里插入代码片

3.13 Cleaning daylight saving data with fold

As we’ve just discovered, there is a ride in our data set which is being messed up by a Daylight Savings shift. Let’s clean up the data set so we actually have a correct minimum ride length. We can use the fact that we know the end of the ride happened after the beginning to fix up the duration messed up by the shift out of Daylight Savings.

Since Python does not handle tz.enfold() when doing arithmetic, we must put our datetime objects into UTC, where ambiguities have been resolved.

Instruction

  • Complete the if statement to be true only when a ride’s start comes after its end.
  • When start is after end, call tz.enfold() on the end so you know it refers to the one after the daylight savings time change.
  • After the if statement, convert the start and end to UTC so you can make a proper comparison.
在这里插入代码片

4. Easy and Powerful: Dates and Times in Pandas

4.1 Reading date and time data in Pandas

4.2 Loading a csv file in Pandas

The capital_onebike.csv file covers the October, November and December rides of the Capital Bikeshare bike W20529.

Here are the first two columns:

Start dateEnd date···
2017-10-01 15:23:252017-10-01 15:26:26···
2017-10-01 15:42:572017-10-01 17:49:59···

Instruction

  • Import Pandas.
  • Complete the call to read_csv() so that it correctly parses the date columns Start date and End date.
在这里插入代码片

4.3 Making timedelta columns

Earlier in this course, you wrote a loop to subtract datetime objects and determine how long our sample bike had been out of the docks. Now you’ll do the same thing with Pandas.

Instruction

  • Subtract the Start date column from the End date column to get a Series of timedeltas; assign the result to ride_durations.
  • Convert ride_durations into seconds and assign the result to the 'Duration' column of rides.
在这里插入代码片

4.4 Summarizing datetime data in Pandas

4.5 How many joyrides?

Suppose you have a theory that some people take long bike rides before putting their bike back in the same dock. Let’s call these rides “joyrides”.

You only have data on one bike, so while you can’t draw any bigger conclusions, it’s certainly worth a look.

Are there many joyrides? How long were they in our data set? Use the median instead of the mean, because we know there are some very long trips in our data set that might skew the answer, and the median is less sensitive to outliers.

Instruction

  • Create a Pandas Series which is True when Start station and End station are the same, and assign the result to joyrides.
  • Calculate the median duration of all rides.
  • Calculate the median duration of joyrides.
在这里插入代码片

4.6 It’s getting cold outside, W20529

Washington, D.C. has mild weather overall, but the average high temperature in October (68ºF / 20ºC) is certainly higher than the average high temperature in December (47ºF / 8ºC). People also travel more in December, and they work fewer days so they commute less.

How might the weather or the season have affected the length of bike trips?

Instruction 1

  • Resample rides to the daily level, based on the Start date column.
  • Plot the .size() of each result.
在这里插入代码片

Instruction 2
Since the daily time series is so noisy for this one bike, change the resampling to be monthly.

在这里插入代码片

4.7 Members vs casual riders over time

Riders can either be “Members”, meaning they pay yearly for the ability to take a bike at any time, or “Casual”, meaning they pay at the kiosk attached to the bike dock.

Do members and casual riders drop off at the same rate over October to December, or does one drop off faster than the other?

Instruction

  • Set monthly_rides to be a resampled version of rides, by month, based on start date.
  • Use the method .value_counts() to find out how many Member and Casual rides there were, and divide them by the total number of rides per month.
在这里插入代码片

4.8 Combining groupby() and resample()

A very powerful method in Pandas is .groupby(). Whereas .resample() groups rows by some time or date information, .groupby() groups rows based on the values in one or more columns. For example, rides.groupby('Member type').size() would tell us how many rides there were by member type in our entire DataFrame.

.resample() can be called after .groupby(). For example, how long was the median ride by month, and by Membership type?

Instruction

  • Complete the .groupby() call to group by ‘Member type’, and the .resample() call to resample according to ‘Start date’, by month.
  • Print the median Duration for each group.
在这里插入代码片

4.9 Additional datetime methods in Pandas

4.10 Timezones in Pandas

Earlier in this course, you assigned a timezone to each datetime in a list. Now with Pandas you can do that with a single method call.

(Note that, just as before, your data set actually includes some ambiguous datetimes on account of daylight saving; for now, we’ll tell Pandas to not even try on those ones. Figuring them out would require more work.)

Instruction 1
Make the Start date column timezone aware by localizing it to 'America/New_York' while ignoring any ambiguous datetimes.

在这里插入代码片

Instruction 2
Now switch the Start date column to the timezone 'Europe/London' using the .dt.tz_convert() method.

在这里插入代码片

4.11 How long per weekday?

Pandas has a number of datetime-related attributes within the .dt accessor. Many of them are ones you’ve encountered before, like .dt.month. Others are convenient and save time compared to standard Python, like .dt.weekday_name.

Instruction

  • Add a new column to rides called 'Ride start weekday', which is the weekday of the Start date.
  • Print the median ride duration for each weekday.
在这里插入代码片

4.12 How long between rides?

For your final exercise, let’s take advantage of Pandas indexing to do something interesting. How much time elapsed between rides?

Instruction

  • Calculate the difference in the Start date of the current row and the End date of the previous row and assign it to rides['Time since'].
  • Convert rides['Time since'] to seconds to make it easier to work with.
  • Resample rides to be in monthly buckets according to the Start date.
  • Divide the average by (60*60) to get the number of hours on average that W20529 waited in the dock before being picked up again.
在这里插入代码片

4.13 Wrap-up

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值