4.1.4 Bond Yields and Return Calculations

4. Bond Yields and Return Calculations

4.1. Yield to Maturity

4.1.1 Definition

Yield to maturity is a single discount rate which if applied to all the bond’s cash flows, would make the cash flow’s present value equal to the bond’s market price.

When YTM expressed with semi-annual compounding, the bond’s market price is :

P = c / 2 1 + y / 2 + c / 2 ( 1 + y / 2 ) 2 + ⋯ + c / 2 + 100 ( 1 + y / 2 ) 2 T P=\frac{c/2}{1+y/2}+\frac{c/2}{(1+y/2)^2}+\cdots+\frac{c/2+100}{(1+y/2)^{2T}} P=1+y/2c/2+(1+y/2)2c/2++(1+y/2)2Tc/2+100

Suppose that a 2-year, 8 % 8\% 8% semi-annual coupon bond is priced at 105 105 105. The YTM of the bond is:

105 = 4 ( 1 + Y T M 2 ) + 4 ( 1 + Y T M 2 ) 2 + 4 ( 1 + Y T M 2 ) 3 + 104 ( 1 + Y T M 2 ) 4 105=\frac{4}{(1+\frac{YTM}{2})}+\frac{4}{(1+\frac{YTM}{2})^2}+\frac{4}{(1+\frac{YTM}{2})^3}+\frac{104}{(1+\frac{YTM}{2})^4} 105=(1+2YTM)4+(1+2YTM)24+(1+2YTM)34+(1+2YTM)4104

The calculator solution is:
N = 4 N=4 N=4, P M T = 4 PMT=4 PMT=4, P V = − 105 PV=-105 PV=105, F V = 100 FV=100 FV=100 C P T → 1 / Y = 2.6625 CPT \to 1/Y=2.6625 CPT1/Y=2.6625, Y T M = 2.6625 × 2 = 5.33 % YTM=2.6625\times2=5.33\% YTM=2.6625×2=5.33%

4.1.2 Properties of YTM

The bond price is inversely related(反向相关) to YTM.

  • At premium: coupon rate > YTM
  • At par: coupon rate = YTM
  • At discount: coupon rate < YTM (e.g,.zero coupon bond)
    请添加图片描述

“Pull to par” effect(回归面值): If no default and the yield keep constant, bond price approaches par value as its time-to-maturity approaches zero.
请添加图片描述

4.1.3 The Relationship between Spot Rates and YTM

YTM is a kind of average of all the spot rates.
P = C F 1 ( 1 + Y T M ) + C F 2 ( 1 + Y T M ) 2 + ⋯ + C F n ( 1 + Y T M ) n P=\frac{CF_1}{(1+YTM)}+\frac{CF_2}{(1+YTM)^2}+\cdots+\frac{CF_n}{(1+YTM)^n} P=(1+YTM)CF1+(1+YTM)2CF2++(1+YTM)nCFn
P = C F 1 ( 1 + z 1 ) + C F 2 ( 1 + z 2 ) 2 + ⋯ + C F n ( 1 + z n ) n P=\frac{CF_1}{(1+z_1)}+\frac{CF_2}{(1+z_2)^2}+\cdots+\frac{CF_n}{(1+z_n)^n} P=(1+z1)CF1+(1+z2)2CF2++(1+zn)nCFn

Coupon effect: The fact that correctly priced bonds with same maturity but different coupons have different yield to maturity.

As coupon rises, the average time it takes bondholders to recover their cash flow flows falls. Therefore, the spot rates for the early payment dates is becoming more important in determining the yield to maturity.

  • Spot curve is upward-sloping (negative relationship): The higher the coupon rate, the lower the YTM (with the same maturity)

  • Spot curve is downward-sloping (positive relationship):The higher the coupon rate, the higher the YTM (with the same maturity)

  • Spot curve is flat (equal): YTM = spot rate

请添加图片描述

Yield Spreads: The market price of a security is recovered by discounting a bond’s cash flows using a appropriate term structure plus a spread.

  • G-spread: yield spread over an actual or interpolated government bond.
  • Zero volatility spread(Z-spread, static spread): a constant yield spread over a government spot curve.
    P V = P M T ( 1 + z 1 + Z ) 1 + P M T ( 1 + z 2 + Z ) 2 + ⋯ + P M T + F V ( 1 + z n + Z ) n PV=\frac{PMT}{(1+z_1+Z)^1}+\frac{PMT}{(1+z_2+Z)^2}+\cdots+\frac{PMT+FV}{(1+z_n+Z)^n} PV=(1+z1+Z)1PMT+(1+z2+Z)2PMT++(1+zn+Z)nPMT+FV

Japanese yields: in Japan, yields are quoted on a simple yield basis, which means that there is no compounding in the yield measurement.
A five-year bond has a coupon of 2 % 2\% 2% and the price of the bond is 99 99 99, the Japanese yield is
Japan    yield = c p + 100 − p p T = 2.22 % \text{Japan\;yield} = \frac{c}{p}+\frac{100-p}{pT}=2.22\% Japanyield=pc+pT100p=2.22%

Question 1: Fiona Johnson, FRM, is a risk manager for a fund. She is analyzing a US Treasury bond position in a client’s portfolio. This bond is a straight bond with a face value $ 100 , 000 100,000 100,000 and 5 5 5 years maturity. The coupon rate is 6 % 6\% 6% on a semi-annual basis and yield to maturity is 5 % 5\% 5%. Fiona thinks that US Treasury yield curve will shift and the yield of this bond will decrease 25 25 25 bps. What will the approximate price change of this bond?

N = 10 N=10 N=10, 1 / Y = 2.5 1/Y=2.5 1/Y=2.5, P M T = 3000 PMT=3000 PMT=3000, F V = 100 , 000 FV=100,000 FV=100,000, → F V original = 104 , 376 \to FV_{\text{original}}=104,376 FVoriginal=104,376

N = 10 N=10 N=10, 1 / Y = ( 5 − 0.25 ) / 2 = 2.375 1/Y=(5-0.25)/2=2.375 1/Y=(50.25)/2=2.375, P M T = 3000 PMT=3000 PMT=3000, F V = 100 , 000 FV=100,000 FV=100,000, → F V new = 105 , 505.5 \to FV_{\text{new}}=105,505.5 FVnew=105,505.5

Price change = 105 , 505.5 − 104 , 376 = 1129.5 \text{Price change}=105,505.5-104,376=1129.5 Price change=105,505.5104,376=1129.5

Question 2: Thomas buys a three-year zero-coupon bond for 87.0 87.0 87.0. Based on the information from Yahoo Finance, he notices that the three-year spot rate is 4 % 4\% 4% (semi-annually compounded). What is the spread of the bond?

87 = 100 ( 1 + 0.04 / 2 + s / 2 ) 6 → s = 0.0070 87=\frac{100}{(1+0.04/2+s/2)^6} \to s=0.0070 87=(1+0.04/2+s/2)6100s=0.0070

4.2 Conventions for Quotation

Bond dealers usually quote flat price while the full price will be paid, and there can be a difference between them.

Full price = Flat price + Accrued Interest (AI)
Dirty price = Clean price + Accrued Interest (AI)

Full    Price = [ P M T ( 1 + r ) 1 + P M T ( 1 + r ) 2 + ⋯ + P M T ( 1 + r ) n ] ( 1 + r ) t / T \text{Full\;Price}=\left[ \frac{PMT}{(1+r)^1}+\frac{PMT}{(1+r)^2}+\dots+\frac{PMT}{(1+r)^n}\right](1+r)^{t/T} FullPrice=[(1+r)1PMT+(1+r)2PMT++(1+r)nPMT](1+r)t/T

Accrued Interest(AI): the proportional share of the next coupon payment.
请添加图片描述
A I = t T × P M T AI=\frac{t}{T}\times PMT AI=Tt×PMT

Day-count conventions:

  • Actual/actual: most commonly for government bonds
  • 30/360: most commonly for corporate and municipal bonds.

An investor is considering buying a corporate bond with 8 % 8\% 8% coupon rate and $ 100 100 100 par value. This bond matures on September 1st 2032 with semi-annual coupon payment. The payment is made on March 1st and September 1st every year. Suppose today is May 1 5 t h 15^{th} 15th 2020 and required yield is 6 % 6\% 6%. How much should the investor pay and what should be the price quoted?

请添加图片描述

  1. 计算AI,注意日期模式
    A I = 74 / 180 × 4 = 1.6444 AI =74/180\times4=1.6444 AI=74/180×4=1.6444

  2. 计算上一个票息支付日的债券价格
    Bond price for previous coupon date (2020/3/1)

    P M T = 4 PMT=4 PMT=4, F V = 100 FV=100 FV=100, N = 25 N=25 N=25, 1 / Y = 3 1/Y=3 1/Y=3, C P T CPT CPT P V = 117.4131 PV=117.4131 PV=117.4131

  3. 复利到交割日(脏价)
    Dirty price for 2020/5/15: 117.4131 × ( 1 + 3 % ) 74 / 180 = 118.8486 117.4131\times(1+3\%)^{74/180}=118.8486 117.4131×(1+3%)74/180=118.8486

  4. 计算净价
    Clean price = dirty price - AI = 118.8486 − 1.6444 = 117.2042 118.8486-1.6444=117.2042 118.84861.6444=117.2042

关注日期模式
请添加图片描述
请添加图片描述

4.3 Decomposition of P&L

4.3.1 Gross and Net Realized Returns

Gross Realized Return: including capital gain or loss and coupon, and if we want to look at the return over a longer period, we must consider the coupon reinvestment.

R t ,    t + 1 = P t + 1 + c − P t P t R_{t,\;t+1}=\frac{P_{t+1}+c-P_t}{P_t} Rt,t+1=PtPt+1+cPt

Suppose there is a 4-year bond with 6 % 6\% 6% semi-annual coupon rate. The initial price is 104.9 104.9 104.9 and turns to be 104 104 104 after one year. The first coupon is reinvested at 5.5 % 5.5\% 5.5%. Calculate the gross returns.
R t ,   t + 1 = 104 + 3 + 3 × ( 1 + 5.5 % / 2 ) − 104.9 104.9 = 4.9 % R_{t,\:t+1}=\frac{104+3+3\times(1+5.5\%/2)-104.9}{104.9}=4.9\% Rt,t+1=104.9104+3+3×(1+5.5%/2)104.9=4.9%

Net Realized Return: The return after financing costs have been subtracted.

Suppose there is a 4-year bond with 6 % 6\% 6% semi-annual coupon rate. The initial price is 104.9 104.9 104.9 and turns to be 104.32 104.32 104.32 after six month. The investor finances the purchase of the bond and a rate of 0.2 % 0.2\% 0.2% would be charged on the amount borrowed. Calculate the net returns.
R t ,   t + 1 = 104.32 + 3 − 104.9 104.9 − 0.2 % 2 = 2.21 % R_{t,\:t+1}=\frac{104.32+3-104.9}{104.9}-\frac{0.2\%}{2}=2.21\% Rt,t+1=104.9104.32+3104.920.2%=2.21%

4.3.2 Decomposition of P&L for a Bond

The bond’s profit and loss consist of both price appreciation/depreciation(capital gain or loss) and cash-carry(cash flows such as coupon payments).

Price appreciation can be decomposed into three components: carry roll-down, rate change and spread change.

The carry roll-down: the return achieved due to the passage of time if there is no change to some aspect of the interest rate environment. The most common assumption when the carry roll-down is calculated is

  • Forward rates are realized( the forward rate for a future period remain unchanged as we move through time).
  • The interest rate term structure stays unchanged.
  • A bond’s yield to maturity remain unchanged.

Rate changes: the return realized when realized rates differ from those assumed in the carry roll-down.

Spread changes: the return realized when a bond’s spread changes.

Consider a bond provides an annual coupon rate of 2 % 2\% 2%. Forward rates are annually compounded and shown below. The investor earns a spread of 50 50 50 bp per years. Calculate the carry roll-down, assuming that forward rates are realized and the spread is unchanged.

Start Period0-11-22-3
Forward Rate3%4%5%
Spread0.5%0.5%0.5%

P = 2 1.035 + 2 1.035 × 1.045 + 102 1.035 × 1.045 × 1.055 = 93.1720 P=\frac{2}{1.035}+\frac{2}{1.035\times1.045}+\frac{102} {1.035\times1.045\times1.055}=93.1720 P=1.0352+1.035×1.0452+1.035×1.045×1.055102=93.1720

P carry roll-down = 2 1.045 + 102 1.045 × 1.055 = 94.4330 P_{\text{carry roll-down}}=\frac{2}{1.045}+\frac{102}{1.045\times1.055}=94.4330 Pcarry roll-down=1.0452+1.045×1.055102=94.4330

Suppose now that forward rates are not realized. The forward rates in one year are shown in the table below. If the spread had remained the same, what is the impact of the term structure change?

Start Period0-11-22-3
Forward Rate-3%4%
Spread-0.5%0.5%

P rate change = 2 1.035 + 102 1.035 × 1.045 = 96.2392 P_{\text{rate change}}=\frac{2}{1.035}+\frac{102}{1.035\times1.045}=96.2392 Prate change=1.0352+1.035×1.045102=96.2392

Suppose now that the spread increases to 100 100 100 bp, If the forward rates are realized, what is the impact of spread changes?

Start Period0-11-22-3
Forward Rate-3%4%
Spread-1%1%

P spread change = 2 1.04 + 102 1.04 × 1.05 = 95.3297 P_{\text{spread change}}=\frac{2}{1.04}+\frac{102}{1.04\times1.05}=95.3297 Pspread change=1.042+1.04×1.05102=95.3297

These results are summarized in the table below:

Initial Price of Bond 93.1720 93.1720 93.1720
Carry Roll-Down 94.4330 − 93.1720 + 2 = 3.261 94.4330-93.1720+2=3.261 94.433093.1720+2=3.261
Rate Changes 96.2392 − 94.433 = 1.8063 96.2392-94.433=1.8063 96.239294.433=1.8063
Spread Changes 95.3297 − 96.2392 = − 0.9096 95.3297-96.2392=-0.9096 95.329796.2392=0.9096
Final Value of Bond 95.3297 95.3297 95.3297
Gain 4.1577 = 3.261 + 1.8063 − 0.9096 4.1577=3.261+1.8063-0.9096 4.1577=3.261+1.80630.9096
内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值