1. 风险与收益的平衡(RAROC)
R A R O C = R e w a r d R i s k RAROC=\frac{Reward}{Risk} RAROC=RiskReward
2. CML
E ( R P ) = R F + [ E ( R M ) − R F σ M ] σ P E(R_P)=R_F+\left[\frac{E(R_M)-R_F}{\sigma_M}\right]\sigma_P E(RP)=RF+[σME(RM)−RF]σP
斜率是夏普比率
3. CAPM
E ( R i ) = r + β i [ E ( R M ) − r ] E(R_i)=r+\beta_i[E(R_M)-r] E(Ri)=r+βi[E(RM)−r]
E ( R i ) = r + σ i ρ i , M [ E ( R M ) − r σ M ] E(R_i)=r+\sigma_i\rho_{i,M}\left[\frac{E(R_M)-r}{\sigma_M}\right] E(Ri)=r+σiρi,M[σME(RM)−r]
斜率是超额收益
β i = c o v ( R i , R M ) σ M 2 = σ i σ M ρ i , M \beta_i=\frac{cov(R_i , R_M)}{\sigma_M^2}=\frac{\sigma_i}{\sigma_M}\rho_{i,M} βi=σM2cov(Ri,RM)=σMσiρi,M
第二个等号后分母是市场组合的标准差,分子是资产的标准差
4. 业绩衡量
4.1 Sharpe measure
S P I = E ( R i ) − r σ i SPI=\frac{E(R_i)-r}{\sigma_i} SPI=σiE(Ri)−r
分母是总风险
4.2 Treynor measure
T P I = E ( R i ) − r β i TPI=\frac{E(R_i)-r}{\beta_i} TPI=βiE(Ri)−r
分母代表的是系统性风险
4.3 Jensen’ Performance Index
R ‾ − r = α i ^ + β i ^ ( R M ‾ − r ) \overline{R}-r=\hat{\alpha_i}+\hat{\beta_i}(\overline{R_M}-r) R−r=αi^+βi^(RM−r)
4.4 Tracking error
∑ ( R P − R B ) 2 N − 1 \sqrt{\frac{\sum(R_P-R_B)^2}{N-1}} N−1∑(RP−RB)2
4.5 Information ratio
I R = E ( R P − R B ) v a r ( R P − R B ) IR=\frac{E(R_P-R_B)}{\sqrt{var(R_P-R_B)}} IR=var(RP−RB)E(RP−RB)
5. Multifactor model
R i = E ( R i ) + β 1 F 1 + β 2 F 2 + ⋯ + β k F k + e i R_i=E(R_i)+\beta_{1}F_1+\beta_{2}F_2+\dots+\beta_{k}F_k+e_i Ri=E(Ri)+β1F1+β2F2+⋯+βkFk+ei
常数项是逾期收益 E ( R i ) E(R_i) E(Ri),模型有残差项 e i e_i ei