[编程之美]买票找零(卡特兰数)

本文探讨了卡特兰数在编程问题中的应用,如买票找零问题、括号化问题和多边形划分等。通过定义、通项公式和递推关系,解释了卡特兰数如何解决涉及成对元素和特定顺序限制的问题。同时,介绍了如何区分使用f(2n)和f(n)公式,并举例说明了如何将实际问题转化为卡特兰数问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次看这题的时候没有好好注意,后来发现这是一类大问题,学习了卡特兰数这个概念,顺便又复习了高中的排列组合知识、、、

一、书中问题

先看一下书中引入卡特兰数的例子:

《编程之美》4.3买票找零:2n个人排队买票,其中n个人持50元,n个人持100元。每张票50元,且一人只买一张票。初始时售票处没有零钱找零。请问这2n个人一共有多少种排队顺序,不至于使售票处找不开钱?

分析1:队伍的序号标为0,1,…,2n-1,并把50元看作左括号,100元看作右括号,合法序列即括号能完成配对的序列。对于一个合法的序列,第0个一定是左括号,它必然与某个右括号配对,记其位置为k。那么从1到k-1、k+1到2n-1也分别是两个合法序列。那么,k必然是奇数(1到k-1一共有偶数个),设k=2i+1。那么剩余括号的合法序列数为f(2i)*f(2n-2i-2)个。取i=0到n-1累加即:
f(2n)=f(0)*f(2n-2)+f(2)*f(2n-4)+······+f(2n-4)*f(2)+f(2n-2)*f(0)
并且令f(0)=1,再由组合数C(0,0)=0,可得

以上就是一种卡特兰数的通项公式,下面具体介绍一下卡特兰数。

二、卡特兰数

1、定义:

以下是百度百科中的定义:卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …

2、通项公式

我接触到的公式的定义有两种形式&#

<think>嗯,用户的问题是关于用C语言通过递推方法解决排队购票的问题,确保不会出现找不开钱的情况。我需要仔细理解这个问题,然后一步步思考如何解决。 首先,问题描述是m个拿50的人和n个拿100的人排队,如何计算不同的排列方式,使得在售票过程中,任何时候拿100的人来买票时,售票处有足够的50找零。这个问题听起来像是经典的卡特兰问题,但可能有一些变化,因为卡特兰处理的是n=m的情况,而这里可能m和n不相等。 我需要先回忆一下卡特兰的应用。卡特兰确实用于这样的排队问题,其中每个100的人前面必须有一个对应的50的人。但通常当m=n时,答案是第n个卡特兰。然而,当m≠n时,比如m < n的情况下,显然没有可行的排列方式,因为总会有某个时刻无法找零。所以首先,如果m < n,结果应该是0。 而当m ≥ n时,这时候可能可以用组合学中的某种递推公式来计算。可能需要使用动态规划的方法,建立一个二维组dp[m][n],其中dp[i][j]表示有i个50和j个100的人时的合法排列。 接下来,递推关系应该是什么样的呢?考虑最后一个人50还是100。如果最后一个是50,那么前面的排列必须是i-1个50和j个100的合法排列。如果最后一个是100,那么前面的排列必须是i个50和j-1个100的合法排列。不过,这里需要注意,在排列过程中任何时候,50量都不能少于100量。因此,这样的递推可能需要满足i ≥ j的条件。 不过,这样的递推可能不够,因为仅仅最后一个是50100并不能保证整个排列是合法的。例如,可能在中间某个位置,已经出现了100多于50的情况。因此,可能需要更严格的递推条件,确保每一步的选择都不会导致非法状态。 这时候,正确的递推条件应该是:当i >= j时,dp[i][j] = dp[i-1][j] + dp[i][j-1]。但是,这个递推是否正确呢?或者是否应该加上其他条件? 比如,当j > i时,dp[i][j] = 0。当i >= j,并且j >=0,那么dp[i][j] = dp[i-1][j] + dp[i][j-1]。但是,初始条件应该是怎样的? 初始条件是,当i=0且j=0时,dp[0][0]=1(空队列)。当i=0且j>0时,dp[0][j]=0,因为没有50的人,无法处理任何100的人。当j=0时,不管i有多少,排列都是1,因为所有都是50的人,只有一种排列方式。例如,dp[i][0] =1,因为不管有多少50的人,只能按顺序排列,没有100的人,所以合法。 那这样的话,递推公式应该是: dp[i][j] = dp[i-1][j] + dp[i][j-1],如果 i >= j 否则 dp[i][j] =0 但需要注意,当i >=j的时候才能进行这样的递推。例如,当处理dp[i][j]时,必须确保i >=j,否则不可能有合法的排列。 例如,当i=2,j=1时,合法的情况目是2。因为可能的排列是50,50,100 或者50,100,50。但这里需要注意的是,第二个排列是否合法?当第一个是50,第二个是100时,此时处理到第二个顾客时,手头有一个50,可以找零。第三个是50,没问题。所以这两种排列都是合法的。所以此时dp[2][1] = 2+1?或者可能需要重新计算。 或者,这里是否正确呢?比如,当i=2,j=1,按照递推公式,dp[2][1] = dp[1][1] + dp[2][0]。 dp[2][0]是1,而 dp[1][1]的值是多少?按照递推,dp[1][1] = dp[0][1] + dp[1][0}。 dp[0][1}=0,dp[1][0}=1,所以 dp[1][1}=1。所以 dp[2][1} =1+1=2,这与实际结果相符。 那这样的话,递推关系是正确的。那在这种情况下,动态规划的状态转移方程是正确的。 接下来,如何用C语言实现这个递推呢? 首先,需要处理的是当m < n时,直接返回0。否则,创建一个二维组dp,大小为(m+1) x (n+1)。初始化所有dp[i][0] =1,其中i从0到m。对于j>0且i<j的情况,dp[i][j}=0。然后,按照递推公式填充组。 需要注意组的索引是否越界,以及如何处理边界条件。 例如,对于i从1到m,j从1到n的情况,只有当i >=j时,才进行递推。否则,保为0。 另外,当i >=j时,如果j-1 >=0,那么加上dp[i][j-1}的值。而i-1 >=0时,加上dp[i-1][j}的值。 这样,最终的dp[m][n]就是所求的结果。 那接下来,用C语言实现这个递推。需要注意的问题包括: 1. 当m <n时,直接返回0。 2. 创建一个二维组,可能需要动态分配内存,特别是当m和n很大时,比如超过栈的容量,所以需要用堆内存。 3. 初始化dp[i][0}为1,对于i >=0,j=0的情况。 4. 遍历顺序:应该按照i和j的顺序填充组。比如,对于每个i从0到m,然后对于每个j从0到i(因为当j超过i时,dp[i][j}=0,但可能j最多到n,但需要确保i >=j)。 或者,另一种方式是按j从1到n,i从j到m,因为当i <j时,dp[i][j}=0,所以不需要处理。 这可能更高效,因为当j超过i时,直接跳过。或者,不管怎样,遍历所有i和j的组合,但只有在i >=j时才计算。 在C语言中,可以这样处理: 初始化二维组dp[m+1][n+1] for (int i = 0; i <= m; i++) { dp[i][0] = 1; } for (int j = 1; j <= n; j++) { for (int i = j; i <= m; i++) { // 因为当i <j时,dp[i][j] =0,所以直接从i=j开始计算 if (i == j) { dp[i][j] = dp[i-1][j]; } else { dp[i][j] = dp[i-1][j] + dp[i][j-1]; } // 这里可能需要考虑当j=0的情况已经初始化了,所以当i >=j的情况下,可以计算。 // 但是,当i >=j时,如何? // 例如,当i >=j,那么如果j >=1,那么dp[i][j] = dp[i-1][j] + dp[i][j-1} // 对于i >=j,并且j >=1的情况下,所以上面的循环中j从1到n,i从j到m。 // 所以,循环结构应该是这样的: // 对于每个j从1到n: // 对于每个i从j到m: // dp[i][j] = dp[i-1][j] + dp[i][j-1} } } 但这里可能有问题,比如当i=0时,j>0时,dp[0][j}=0,已经被初始化为0? 或者,是否需要先初始化所有dp[i][j}为0,然后再处理? 比如,初始化的时候,将所有素设为0,然后对于i >=0,设置dp[i][0}=1。这可能更安全。 所以,具体步骤: 1. 检查m <n,如果是,返回0。 2. 动态分配一个二维组dp,大小为(m+1) x (n+1)。 3. 初始化所有素为0。 4. 对于i从0到m,设置dp[i][0} =1。 5. 对于j从1到n: a. 对于i从j到m: i. dp[i][j} = dp[i-1][j} + dp[i][j-1} 因为当i >=j,且j >=1时,这样才能保证任何时候,50量都不少于100量。 例如,当处理到第i个50和第j个100时,如果此时i >=j,那么可以有两种情况: - 最后一个排的是50的人,那么前面需要有i-1个50和j个100的人,且i-1 >=j(因为i >=j,i-1可能等于j-1,如果i=j的话,i-1 =j-1,此时i-1 = j-1 >=j吗?不,当i=j时,i-1 =j-1 <j。因此这种情况下,可能递推式有问题?) 哦,这里可能发现了问题。比如,当i =j时,按照之前的递推式,dp[i][j} = dp[i-1][j} + dp[i][j-1}。但此时,i-1 =j-1,而j是当前的j,比如当i=j=1时,i-1=0,j=1,此时dp[0][1}的值是0,所以此时dp[1][1} =0 + dp[1][0} =0 +1=1,这是正确的,因为当m=1,n=1时,只有一种排列方式:先50,再100。 那这时候,递推式是正确的。但是,当i=j的时候,i-1可能小于j吗? 比如,i=j=2。此时i-1=1,j=2。这时候,i-1 <j,所以dp[i-1][j}即dp[1][2}是0,因为当i=1 <j=2的时候,所以此时dp[2][2} = dp[1][2}(0) + dp[2][1}(假设之前计算的值)。例如,当i=2,j=2,那么递推式是dp[2][2} = dp[1][2} + dp[2][1}。但 dp[1][2}是0,因为i=1 <j=2。而 dp[2][1}则是之前计算的,比如当j=1,i=2时,它的值是dp[1][1} + dp[2][0} =1 +1=2。所以 dp[2][2}=0 +2=2。对吗? 这时候,正确的答案应该是多少?当m=2,n=2时,合法的排列目是卡特兰C2=2。所以确实dp[2][2}=2。这说明递推式是正确的。 那这个递推式是正确的。所以,正确的动态规划方法应该是这样。 现在,如何在C语言中实现这个呢? 例如,当m=3,n=2。那么可能的合法排列目应该是: 根据递推: dp[3][2} = dp[2][2} + dp[3][1} dp[2][2}=2,dp[3][1} = dp[2][1} + dp[3][0} = 2 +1=3。所以 dp[3][2}=2+3=5。 那此时总共有5种合法排列方式。 那是否正确呢?当m=3,n=2,总共有C(3+2,2) - ... ?或者可能需要手动计算。 比如,合法的排列必须满足在任何前缀中,50量 >=100量。对于m=3,n=2,总共有C(5,2) =10种可能的排列,其中符合条件的有5种。例如: 50,50,50,100,100 → 合法。 50,50,100,50,100 → 合法。 50,50,100,100,50 → 非法,因为在第四位的时候,100出现两次,而50出现两次,此时100量等于50量。第五位是50,但此时第四位之后的情况是否合法? 等一下,可能我在这里需要重新思考。 例如,排列50,50,100,50,100: 前缀1:50 → 正确(1个50,0个100) 前缀2:50,50 → 正确(2,0) 前缀3:50,50,100 → 正确(2,1) → 此时,502 >=1 → 正确。 前缀4:50,50,100,50 → 3 >=1 → 正确。 前缀5:全部,3 >=2 →正确。 所以这个排列是合法的。 另一个排列:50,100,50,50,100 → 是否合法? 前缀1:50 → 正确。 前缀2:50,100 → 此时50量1,100量1 → 相等,所以可以处理,但是根据条件,必须任何时候50量严格大于100量吗? 哦,这里可能有一个关键点。当处理到第k个人时,前面k-1个人已经处理完毕。假设售票开始时没有钱。当第一个人100的话,无法找零,所以所有排列必须以50开头。 所以,在递推中,是否隐含了必须以50开头的条件? 例如,当i <j时,没有解,而当i >=j时,可能存在解,但必须满足在每一步的排列中,50量至少等于100量。 比如,当i=3,j=2,总共有5种排列方式。这可能正确。 那此时动态规划的递推式是正确的。 现在,回到C语言实现的问题。代码的大致结构: #include <stdio.h> #include <stdlib.h> long long count_ways(int m, int n) { if (m < n) { return 0; } // 创建二维组 long long **dp = (long long **)malloc((m+1)*sizeof(long long *)); for (int i = 0; i <= m; i++) { dp[i] = (long long *)malloc((n+1)*sizeof(long long)); } // 初始化 for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { dp[i][j] = 0; } } // 当j=0时,所有i的情况都是1 for (int i = 0; i <= m; i++) { dp[i][0] = 1; } // 动态规划填充 for (int j = 1; j <= n; j++) { for (int i = j; i <= m; i++) { dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } long long result = dp[m][n]; // 释放内存 for (int i = 0; i <= m; i++) { free(dp[i]); } free(dp); return result; } int main() { int m, n; printf("请输入m和n的值:"); scanf("%d %d", &m, &n); long long ways = count_ways(m, n); printf("合法的排列方式量为:%lld\n", ways); return 0; } 这个代码是否正确呢?比如,当m=2,n=1时,应该返回2。运行这个代码的话: 当j=1时,i从1到m=2: 对于i=1: dp[1][1] = dp[0][1} + dp[1][0} → 0 +1 =1. 对于i=2: dp[2][1} = dp[1][1} + dp[2][0} →1 +1=2. 所以结果正确。 当m=3,n=2,结果是5。代码中,当j=2时,i从2到3: i=2时,j=2: dp[2][2} = dp[1][2} (i=1 <j=2,所以是0) + dp[2][1} (2) →0+2=2. i=3时,j=2: dp[3][2} = dp[2][2} (2) + dp[3][1} →2 +3=5. 而dp[3][1}的计算是当j=1时,i从1到3: i=1 → dp[0][1} + dp[1][0} →0+1=1. i=2 → dp[1][1} (1) + dp[2][0} (1)2. i=3 → dp[2][1} (2) + dp[3][0} (1) →3. 所以是的,结果正确。 所以这段代码应该正确。 另外,需要注意据类型,当m和n较大时,可能会超过long long的范围,但题目没有说明据规模,所以暂时假设在合理范围内。 现在,用户的问题是使用递推方法实现,这个代码满足递推的条件。因此,这个应该是正确的解决方案。</think>要解决排队购票问题,需计算手50($m$人)和100($n$人)的合法排列,确保找零始终可行。递推方法的核心是动态规划,状态定义为$dp[i][j]$表示前$i$个50和$j$个100的合法排列。递推关系为: $$ dp[i][j] = \begin{cases} 1 & \text{if } j=0 \\ 0 & \text{if } i<j \\ dp[i-1][j] + dp[i][j-1] & \text{otherwise} \end{cases} $$ ### C语言实现代码 ```c #include <stdio.h> #include <stdlib.h> long long count_ways(int m, int n) { if (m < n) return 0; long long **dp = (long long **)malloc((m+1) * sizeof(long long *)); for (int i = 0; i <= m; i++) { dp[i] = (long long *)calloc(n+1, sizeof(long long)); } for (int i = 0; i <= m; i++) dp[i][0] = 1; for (int j = 1; j <= n; j++) { for (int i = j; i <= m; i++) { dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } long long result = dp[m][n]; for (int i = 0; i <= m; i++) free(dp[i]); free(dp); return result; } int main() { int m, n; printf("输入m和n(空格分隔): "); scanf("%d %d", &m, &n); printf("合法排列: %lld\n", count_ways(m, n)); return 0; } ``` ### 关键点说明 1. **边界条件**:当$m < n$时无解;当$n=0$时只有1种排列方式。 2. **递推逻辑**:通过逐步添加50100的人,确保每一步50量不小于100量[^1]。 3. **空间优化**:实际工程中可优化为一维组以减少空间复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值