题目链接
题解
动态点分治,和上一题一样.同样三个堆.就是带权,用边权替换深度就好
为什么要单独写这个题解呢,因为我卡常卡了一天....据说树剖比rmq快? 在第24次AC
同样也有更有做法
代码
#include<queue>
#include<cstdio>
#include<cctype>
#include<algorithm>
/*char ch;
char buf[100000],*p1 = buf,*p2 = buf;
int F = 1;
#define nc() \
p1 == p2 && (p2 = (p1 = buf) + fread(buf,1,100000,stdin),p1 == p2) ? EOF :*p1 ++;
#define read(x) \
x = 0;ch = nc();F = 1; \
while(!isdigit(ch)) { if (ch == '-') F = -1; ch = nc();}\
while(isdigit(ch))x = x*10+ch - '0',ch = nc();\
x *= F;
*/
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int MAXIN=3e5;
char IN[MAXIN],*SS=IN,*TT=IN;
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
inline int read() {
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
#define INF 998244353
const int maxn = 100007;
int son[maxn],f[maxn],mn[maxn << 1][25],root,tot;
struct node {
int u,v,next,w;
} edge[maxn << 1];
int head[maxn],num = 0;
inline void add_edge(int u,int v,int w) {
edge[++ num].v = v;edge[num].next = head[u];head[u] = num;
edge[num].w = w;
}
int n;
int lg[maxn << 1],dfn;// = 0;
bool col[maxn];
struct Heap {
std::priority_queue<int>A,B;
inline void push(int x) { A.push(x); }
inline void erase(int x) { B.push(x); }
inline void pop() { while(B.size() && A.top() == B.top()) A.pop(),B.pop(); A.pop(); }
inline int top() {
while(B.size() && A.top() == B.top()) A.pop(),B.pop();
return A.top();
}
inline int size() { return A.size() - B.size(); }
int retop() { if(size() < 2) return 0;int x = top();pop();int ret = top();push(x);return ret;}
} b[maxn],c[maxn],ans;
inline void insert(Heap &s) {if(s.size() > 1)ans.push(s.top() + s.retop());}
inline void dele(Heap &s) {if(s.size() > 1) ans.erase(s.top() + s.retop());}
int pos[maxn],Dis[maxn];
int id[maxn],tm;
void dfs_rmq (int x,int fa) {
int t = ++ tm; mn[pos[x] = ++ dfn][0] = tm,id[t] = x;
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(v == fa)continue;
Dis[v] = Dis[x] + edge[i].w;
dfs_rmq(v,x);
mn[++ dfn][0] = t; //访问完子树后加上Qwq
}
}
inline int lca(int x,int y) {
x = pos[x];y = pos[y];
if(y < x) std::swap(x,y);
int k = lg[y - x + 1];
return id[std::min(mn[x][k],mn[y - (1 << k) + 1][k])];
}
inline int dis(int x,int y) {
return Dis[x] + Dis[y] - 2 * Dis[lca(x,y)];
}
bool vis[maxn];int fa[maxn];
void get_root(int x,int fa) {
son[x] = 1; f[x] = 0;
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(v == fa || vis[v]) continue;
get_root(v,x);
son[x] += son[v];f[x] = std::max(f[x],son[v]);
}
f[x] = std::max(f[x],tot - son[x]);
if(f[x] < f[root]) root = x;
}
void get(int x,int Fa,int rt) {
b[root].push(dis(x,fa[root]));
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v; if(v == Fa || vis[v]) continue;
get(v,x,rt);
}
}
void build(int x,int Fa) {
fa[x] = Fa;vis[x] = 1;
c[x].push(0);
get(x,0,Fa);
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(!vis[v] && v != Fa) {
tot = son[edge[i].v];root = 0;f[0] = INF;
get_root(edge[i].v,x);
v = root;
build(root,x);
c[x].push(b[v].top());
}
}
insert(c[x]);
}
void turn(int x,bool type) {
dele(c[x]);
if(type) c[x].erase(0);
else c[x].push(0);
insert(c[x]);
for(int i = x;i;i = fa[i]) {
dele(c[fa[i]]);
//printf("%d ",i);
if(b[i].size()) c[fa[i]].erase(b[i].top());
if(type)b[i].erase(dis(x,fa[i])); else b[i].push(dis(x,fa[i]));
if(b[i].size()) c[fa[i]].push(b[i].top());
insert(c[fa[i]]);
}
//puts("");
}
inline char get(){
char c=gc();
while(c!='A'&&c!='C') c=gc();
return c;
}
int main() {
n = read();
//read(n);
for(int u,v,w,i = 1;i < n;++ i) {
u = read(),v = read(),w = read();
//read(u);read(v);read(w);
add_edge(u,v,w);add_edge(v,u,w);
}
dfs_rmq(1,0);
for(int i = 2;i <= dfn;++ i) lg[i] = lg[i >> 1] + 1;
for(int i = 1;i <= lg[dfn];++ i)
for(int j = dfn - (1 << i - 1);j;-- j)
mn[j][i] = std::min(mn[j][i - 1],mn[j + (1 << i - 1)][i - 1]);
f[0] = INF; root = 0; tot = n;
get_root(1,0);
build(root,0);
//char opt[10];
int Q = read();
int sum = n;
for(int asd;Q --;) {
//scanf("%s",opt + 1);
if(get() == 'C') {
asd = read();//read(asd);
if(col[asd]) turn(asd,0), sum ++,col[asd] = 0;
else turn(asd,1),sum --,col[asd] = 1;
}
else {
if(sum == 1)puts("0");
else if(!sum)puts("They have disappeared.");
else printf("%d\n",std::max(0,ans.top()));
}
}
return 0;
}