关于对数复杂度

今天下午的一会看了对数的知识,因为复杂度中经常会用到对数级别的复杂度。

先看一个对数的公式吧:


今天下午我盯着这个公式看了半天,想知道这个公式是怎么得来的,甚至还花了图,但最后感觉心里还不是很透彻……

然后我又一次感觉到:理解数学中的一些东西,真不是靠画图去理解的,那些数学好的人,肯定也不是这样学数学的。

但我真的很想把数学学好啊……大哭

—— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— 

还是看一下百度百科上是怎么推导上面的公式的吧:


原来是这样推导而来的。其实很多数学公式就是一层层的推导而来的,是没法画图去解释的。

再说说法复杂度吧,看下图:


我们可以看到,图中对数级别的复杂度是最低的,而指数级(即2的n次方)的复杂度最高,其实阶乘的复杂度比指数级还高:

2的n次方:如2的6次方 = 64

1到6的阶乘:1*2*3*4*5*6 = 720

而对数,其实就是指数运算的逆运算:如2的6次方等于64,而log264=6

除了O(1)复杂度,对数复杂度,就已经是查找时间最快的了吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值