命题逻辑
1.能判断真假但不能既真又假的陈述句称作为命题
2.,作为命题的陈述句所表达的判断只有两种结果,正确的或错误的,称这种判断结果是命题的真值
3.真值只能取两个值,真或假。真值为真的叫真命题,真值为假的叫假命题。
例:
(1)你去教室吗? 疑问句
(2)这个苹果真大呀! 感叹句
(3)请不要讲话! 祈使句
(4)您贵姓? 疑问句
(5)x+y>10 陈述句,但真值不为一
(6)2050年元旦下大雪 陈述句,具有唯一真值
(7)请把门打开! 祈使句
解析:(1)和(4)为疑问句,(2)为感叹句,(3)和(7)为祈使句,因为他们都不是陈述句所以不是命题。(5)x,y的值不固定,当x=5,y=8时5+8>10为正确,当x=2,y=5时2+5>10为错误。所以该题也不是命题。其中(6)为命题,但是目前真值未知。需要等到2050年验证。
4.简单命题用联结词来联结的叫做复合命题
5.复合命题“┐P(非P)”称为P的否定式,“┐”称为否定联结词(┐P)
6.复合命题“P并且Q(P与Q) ”称为P与Q的合取式,“∧ ”称为合取联结词(P∧ Q)
7.复合命题“P或Q ”称为P与Q的析取式,“v ”称为析取联结词(P v Q)
8.复合命题“P则Q ”称为P与Q的蕴含式,“→”称为蕴含联结词(P → Q)
9.复合命题“P当且仅当Q ”称为P与Q的等价式,“<->”称为蕴含联结词(P <->Q)
合式公式
1.p,q,r······为命题常项或者命题常元
2.将命题常项和命题变项用联结词和圆括号按一定逻辑关系联结起来的符号串称为合式公式
定义:(1)单个的命题变项(常项)是合式公式;
(2)如果A是合式公式,(┐A)也为合式公式;
(3)如果A,B是合式公式,(A∧ B),(A v B),(A → B),(A <->B)也被称作为合式公式;
(4)只有有限次地应用(1)-(3)形成的符号串才是合式公式;
合式公式也被称为命题公式,简称公式
真值表
几种常见的真值表:
P | Q | ┐P | ┐Q |
0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 |
P | Q | p∧q | p v q |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 |
P | Q | p→q | p<->q |
0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
例题:
利用真值表求公式┐(P→Q)∧Q∧R
答:
P Q R P→Q ┐(P→Q) Q∧R ┐(P→Q)∧Q∧R
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 1 0 1 0 0
1 1 0 1 0 0 0
1 1 1 1 0 1 0
定义:设A为一命题公式
(1)当A在它的各种赋值下取值均为真,A为重言式(永真式)
(2)当A在它的各种赋值下取值均为假,A为矛盾式(永假式)
(3)当A不为矛盾式的时候,A为可满足式
等值演算
1.双重否定律
A<=>┐┐A
2.幂等律
A<=>Av A,
A<=>A∧A
3.交换律
Av B<=>Bv A
A∧B<=>B∧A
4.结合律
(AvB)vC<=>Av(BvC)
(A∧B)∧C<=>A∧(B∧C)
5.分配律
Av(B∧C)<=>(AvB)∧(AvC)
A∧(BvC)<=>(A∧B)v(A∧C)
6.德摩根律
┐(AvB)<=>┐A∧┐B
┐(A∧B)<=>┐Av┐B
7.吸收律
Av(A∧B)<=>A
A∧(AvB)<=>A
8.零律
Av1<=>1
A∧0<=>0
9.同一律
Av0<=>A
A∧1<=>A
10.排中律
Av┐A<=>1
11.矛盾律
A∧┐A<=>0
12.蕴涵等值式
A→B<=>┐AvB
13.等价等值式
A<->B<=>(A→B)∧(B→A)
14.假言易位
A→B<=>┐B→┐A
15.等价否定等值式
A<->B<=>┐A<->┐B
16.归谬论
(A→B)∧(A→┐B) <=>┐A
例题:
(1)(P→Q)→R<=>(┐Q∧P)vR — 验证等值式
解:(P→Q)→R
<=>(┐PvQ)→R
<=>┐(┐PvQ)vR
<=>(P∧┐Q)vR
<=>(┐Q∧P)vR
析取范式和合取范式
定义:(1)有限个简单合取式构成的析取式称为析取范式
(2)有限个简单析取式构成的合取式称为合取范式
性质:(1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
(2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
p,q两个命题变项生成的4个极小项对应的二进制和十进制数如下:(数字为下标)
┐P∧┐Q ——00——0,记做m0;
┐P∧Q ——01——1,记做m1;
P∧┐Q ——10——2,记做m2;
P∧Q ——11——3,记做m3
p,q,r三个命题变项生成8个极小项:(数字为下标)
┐P∧┐Q∧┐R ——000——0,记做m1;
┐P∧┐Q∧R ——001——1,记做m2;
┐P∧Q∧ ┐R ——010——2,记做m3;
┐P∧Q∧R ——011——3,记做m4;
P∧┐Q∧┐R ——100——4,记做m5;
P∧┐Q∧R ——101——5,记做m6;
P∧Q∧┐R ——110——6,记做m7;
P∧Q∧R ——111——7,记做m8;
主合取范式为:(数字为下标)
pvq ——00——0,记做M0;
pv┐q ——01——1,记做M1;
┐pvq ——02——2,记做M2;
┐pv┐q ——03——3,记做M3;
例题:
求公式p→((q∧r)∧(p v(┐q∧┐r)))的主析取范式,再由主析取范式求出公式的主合取范式,并判断公式的类型。
解:p→((q∧r)∧(p v(┐q∧┐r)))
⇔┐p v((p∧q∧r)v((q∧r)∧(┐q∧┐r)))
⇔┐p v (p∧q∧r)
⇔(┐p∧(q v┐q)∧(r v┐r)) v (p∧q∧r)
⇔(┐p∧q∧r) v(┐p∧┐q∧r) v(┐p∧q∧┐r) v(┐p∧┐q∧┐r) v(p∧q∧r)
⇔m3 v m1 v m2 v m0 v m7
⇔m0 v m1 v m2 v m3 v m7 (主析取)
⇔M4 ∧ M5 ∧ M6 (主合取)
结论:公式为可满足式
命题逻辑的推理理论
8条推理定律
1.A=>(AvB) 附加
2.(A∧B)=>A 化简
3.(A→B)∧A=>B 假言推理
4.(A→B)∧┐B=>┐A 拒取式
5.(AvB)∧┐B=>A 析取三段论
6.(A→B)∧(B→C)=>(A→C) 假言三段论
7.(A<=>B)∧(B<=>C)=>(A<=>C) 等价三段论
8.(A→B)∧(C→D)∧(AvC)=>(BvD) 构造性二难
规则:
1.前提引入规则:在证明的任何步骤上,都可引入前提。
2.结论引入规则:在证明的任何步骤上,所得到的结论都可以作为后续证明的前提,加以引用。
3.置换规则:在证明的任何步骤上,命题公式中的任何子公式都可以用与之等值的公式置换,得到公式序列中又一公式。
4.假言推理规则:若证明的公式序列中已出现过A→B和A,则由假言推理定律可知。B是A→B和A的逻辑结论,由推理规则2,可引入B。
5.附加规则:若证明的公式序列中已出现A,由附加律可知,AvB是A的逻辑结论,由规则2,可引入A或B。
6.化简规则:若证明的公式序列中已出现A∧B,由化简律可知,A,B都是A∧B的逻辑结论。由规则2可引入A或B。
7.拒取式规则:若证明的公式序列中已出现A→B和┐B,则可以引入┐A。
8.假言三段论规则:若证明的公式序列中已出现A→B和B→C,则可以引入A→C。
9.析取三段论规则:若证明的公式序列中已出现过AvB和┐B,则可以引入A。
10.构造性二难规则:若证明的公式序列中已出现过A→B,C→D,AvC,则可以引入BvD
例题:
1.用直接证明法证明下面的推理
前提:p→r,q→s,q,p
结论:r∧s
证明:① p→r
② p
③ r
④ q→s
⑤ q
⑥ s
⑦ r∧s
2.用附加前提法证明下面的推理
前提: ┐p v (q→r),s→p,q
结论:┐r→┐s
证明:① ┐p v (q→r)
② ┐r
③ ┐p v ┐q
④ q
⑤ ┐p
⑥ s→p
⑦ ┐s
3.用归谬法证明下面的推理
前提: p→(q→r),p∧q
结论:r v s
证明:① ┐(r v s)
② ┐r∧┐s
③ ┐r
④ p→(q→r)
⑤ p→┐q
⑥ p∧q
⑦ p
⑧ ┐q
⑨ ┐p
⑩ p∧┐p
结论:p∧┐p为矛盾式,