分类问题的常用评价指标precision和recall

对于二分类问题常用的评价指标是精确率(precision)以及召回率(recall)。

通常,以关注的类为正类,其他的类为负类。

则在预测的时候会有如下四种情况:

  • TP——将正类预测为正类的数量
  • FN——将正类预测为负类的数量
  • FP——将负类预测为正类的数量
  • TN——将负类预测为负类的数量

精确率定义为:precision=TP/(TP+FP)  

即在预测为正类的结果集中,真的为正类的比例定义为准确率。

召回率定义为:recall=TP/(TP+FN)

即在所有的正类中,被成功预测为正类的数量。

形象一点的例子:假设现在有一大群动物,正类为老虎。现在我们将判别每一只动物的种类。

那么准确率就是:在我们判定为老虎的动物中,precision=真老虎的数量 / 我们认为是老虎的数量。

而召回率就是:我们成功判定的老虎数量 / 所有真老虎的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值