对于二分类问题常用的评价指标是精确率(precision)以及召回率(recall)。
通常,以关注的类为正类,其他的类为负类。
则在预测的时候会有如下四种情况:
- TP——将正类预测为正类的数量
- FN——将正类预测为负类的数量
- FP——将负类预测为正类的数量
- TN——将负类预测为负类的数量
精确率定义为:precision=TP/(TP+FP)
即在预测为正类的结果集中,真的为正类的比例定义为准确率。
召回率定义为:recall=TP/(TP+FN)
即在所有的正类中,被成功预测为正类的数量。
形象一点的例子:假设现在有一大群动物,正类为老虎。现在我们将判别每一只动物的种类。
那么准确率就是:在我们判定为老虎的动物中,precision=真老虎的数量 / 我们认为是老虎的数量。
而召回率就是:我们成功判定的老虎数量 / 所有真老虎的数量