bzoj 1168 [Baltic2008]Gloves

考虑怎样取可以拿不到颜色相同的一双手套。

每种颜色的手套只在左手/右手取到,这样可以分到2^n种情况。然后对于每种情况设左手取手套总数为x,右手为y 那么在坐标轴上从点(0,0)到(x,y)的所有情况都是可以被这个情况包含的,所以都不可行。那么问题转化为 求第一象限没被覆盖的,满足x+y最小情况下x最小的点。答案肯定是某个L型拐角处,单调队列处理。

upd:由于Wa了两发所以决定先研究一下常数...为什么dfs会比直接枚举快...为什么int i,j拿出来反而慢了...等等再试试别的...最后发现...dfs最快

为什么QAQAQAQAQ。。。

这个时候数据要到了...给了测试点10-14...测了测(手动)都对了。。。心里升起一种不祥的预感。。。于是又发了邮件希望要全部数据。。。好嘛数据点223。。。去下个lemon吧,可是我不会配编译器路径啊,算了还是手动测吧。转眼一年过去了,最后没有耐心改了,特判了特殊情况就过了。

所以最后代码还是这么丑我真的(^*&%^@^@&(*#.....

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
struct point{int x,y;}p[1<<20|1];
int n,a[21],b[21],cnt,q[1<<20|1],t=1,x,sa,sb;
LL s=1e10;
void dfs(int x,int l,int r)
{
	if(x==n+1){p[++cnt].x=l,p[cnt].y=r;return;}
	dfs(x+1,l+a[x],r),dfs(x+1,l,r+b[x]);
}
bool operator <(point a,point b){return a.x==b.x?a.y>b.y:a.x<b.x;}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)scanf("%d",&b[i]);
	int tot=n; n=0;
	for(int i=1;i<=tot;i++)
	if(!a[i]||!b[i]) sa+=a[i],sb+=b[i];
	else a[++n]=a[i],b[n]=b[i];
	dfs(1,0,0);
	sort(p+1,p+cnt+1);
	for(int i=1;i<=cnt;i++)
	{
		while(t&&p[q[t]].y<=p[i].y)t--;
		q[++t]=i;
	}
	for(int i=1;i<=t;i++)
	{
		LL tmp=(LL)(p[q[i-1]].x+p[q[i]].y+2);
		if(tmp<s)s=tmp,x=p[q[i-1]].x+1;
		else if(tmp==s&&p[q[i-1]].x+1<x)x=p[q[i-1]].x+1;
	}
	printf("%d %lld\n",x+sa,s-(LL)x+(LL)sb);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值