推荐系统
文章平均质量分 95
蜗牛海胆
蜗牛吃了海胆,会不会非常大胆
展开
-
Datawhale第23期组队学习—深度学习推荐系统—task5 DIN
DIN1. 背景2. 模型原理2.1 特征表示2.2 base模型3. DIN的进阶4. 代码实现参考来源:https://github.com/datawhalechina/team-learning-rs/blob/master/DeepRecommendationModel/DIN.mdhttps://blog.csdn.net/friyal/article/details/83063948https://zhuanlan.zhihu.com/p/783652831. 背景阿里巴巴原创 2021-03-27 11:11:24 · 169 阅读 · 0 评论 -
Datawhale第23期组队学习—深度学习推荐系统—task4 NFM
NFM1. 动机2. 模型结构与原理3. 代码实现1. 动机2. 模型结构与原理3. 代码实现原创 2021-03-24 14:04:49 · 205 阅读 · 0 评论 -
Datawhale第23期组队学习—深度学习推荐系统—task3 DeepFM
DeepFM1. 引言1.1 学习总结1.2 研究背景1.3 已有模型的介绍2. DeepFM模型结构与原理2.1 FM2.2 Deep2.3 DeepFM3. 代码实现本文主要参考来源-Datawhale:https://github.com/datawhalechina/team-learning-rs/blob/master/DeepRecommendationModel/DeepFM.md1. 引言1.1 学习总结通过这段时间的学习,逐渐发现了学习过程中的一些规律。可能也是巧合,很多模型的名原创 2021-03-21 22:33:38 · 160 阅读 · 0 评论 -
Datawhale第23期组队学习—深度学习推荐系统—task2 Wide&Deep
目录1. 动机2. 模型结构及原理3. 代码实现文章参考来源:点击此处1. 动机在CTR预估任务中利用手工构造的交叉组合特征来使线性模型具有“记忆性”,使模型记住共现频率较高的特征组合,往往也能达到一个不错的baseline,且可解释性强。但这种方式有着较为明显的缺点:特征工程需要耗费太多精力。模型是强行记住这些组合特征的,对于未曾出现过的特征组合,权重系数为0,无法进行泛化。为了加强模型的泛化能力,研究者引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种原创 2021-03-18 22:52:37 · 113 阅读 · 0 评论