50例源码Python scipy.stats.norm 模块,pdf()

Python scipy.stats.norm 模块,pdf() 实例源码

转:http://codingdict.com/sources/py/scipy.stats.norm/13753.html
建议,到原网站去看效果比较好.

Python50个代码示例,用于说明如何使用scipy.stats.norm.pdf()。

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_megkde_2d_basic():
# Draw from normal, fit KDE, see if sampling from kde’s pdf recovers norm
np.random.seed(1)
data = np.random.multivariate_normal([0, 1], [[1.0, 0.], [0., 0.75 ** 2]], size=10000)
xs, ys = np.linspace(-4, 4, 50), np.linspace(-4, 4, 50)
xx, yy = np.meshgrid(xs, ys, indexing=‘ij’)
samps = np.vstack((xx.flatten(), yy.flatten())).T
zs = MegKDE(data).evaluate(samps).reshape(xx.shape)
zs_x = zs.sum(axis=1)
zs_y = zs.sum(axis=0)
cs_x = zs_x.cumsum()
cs_x /= cs_x[-1]
cs_x[0] = 0
cs_y = zs_y.cumsum()
cs_y /= cs_y[-1]
cs_y[0] = 0
samps_x = interp1d(cs_x, xs)(np.random.uniform(size=10000))
samps_y = interp1d(cs_y, ys)(np.random.uniform(size=10000))
mu_x, std_x = norm.fit(samps_x)
mu_y, std_y = norm.fit(samps_y)
assert np.isclose(mu_x, 0, atol=0.1)
assert np.isclose(std_x, 1.0, atol=0.1)
assert np.isclose(mu_y, 1, atol=0.1)
assert np.isclose(std_y, 0.75, atol=0.1)

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_grid_data(self):
x, y = np.linspace(-3, 3, 200), np.linspace(-5, 5, 200)
xx, yy = np.meshgrid(x, y, indexing=‘ij’)
xs, ys = xx.flatten(), yy.flatten()
chain = np.vstack((xs, ys)).T
pdf = (1 / (2 * np.pi)) * np.exp(-0.5 * (xs * xs + ys * ys / 4))
c = ChainConsumer()
c.add_chain(chain, parameters=[‘x’, ‘y’], weights=pdf, grid=True)
summary = c.analysis.get_summary()
x_sum = summary[‘x’]
y_sum = summary[‘y’]
expected_x = np.array([-1.0, 0.0, 1.0])
expected_y = np.array([-2.0, 0.0, 2.0])
threshold = 0.1
assert np.all(np.abs(expected_x - x_sum) < threshold)
assert np.all(np.abs(expected_y - y_sum) < threshold)

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_summary_max_symmetric_2(self):
c = ChainConsumer()
c.add_chain(self.data_skew)
summary_area = 0.6827
c.configure(statistics=“max_symmetric”, bins=1.0, summary_area=summary_area)
summary = c.analysis.get_summary()[‘0’]

    xs = np.linspace(0, 2, 1000)
    pdf = skewnorm.pdf(xs, 5, 1, 1.5)
    xmax = xs[pdf.argmax()]
    cdf_top = skewnorm.cdf(summary[2], 5, 1, 1.5)
    cdf_bottom = skewnorm.cdf(summary[0], 5, 1, 1.5)
    area = cdf_top - cdf_bottom

    assert np.isclose(xmax, summary[1], atol=0.05)
    assert np.isclose(area, summary_area, atol=0.05)
    assert np.isclose(summary[2] - summary[1], summary[1] - summary[0])

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_summary_max_symmetric_3(self):
c = ChainConsumer()
c.add_chain(self.data_skew)
summary_area = 0.95
c.configure(statistics=“max_symmetric”, bins=1.0, summary_area=summary_area)
summary = c.analysis.get_summary()[‘0’]

    xs = np.linspace(0, 2, 1000)
    pdf = skewnorm.pdf(xs, 5, 1, 1.5)
    xmax = xs[pdf.argmax()]
    cdf_top = skewnorm.cdf(summary[2], 5, 1, 1.5)
    cdf_bottom = skewnorm.cdf(summary[0], 5, 1, 1.5)
    area = cdf_top - cdf_bottom

    assert np.isclose(xmax, summary[1], atol=0.05)
    assert np.isclose(area, summary_area, atol=0.05)
    assert np.isclose(summary[2] - summary[1], summary[1] - summary[0])

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_summary_max_shortest_2(self):
c = ChainConsumer()
c.add_chain(self.data_skew)
summary_area = 0.6827
c.configure(statistics=“max_shortest”, bins=1.0, summary_area=summary_area)
summary = c.analysis.get_summary()[‘0’]

    xs = np.linspace(-1, 5, 1000)
    pdf = skewnorm.pdf(xs, 5, 1, 1.5)
    cdf = skewnorm.cdf(xs, 5, 1, 1.5)
    x2 = interp1d(cdf, xs, bounds_error=False, fill_value=np.inf)(cdf + summary_area)
    dist = x2 - xs
    ind = np.argmin(dist)
    x0 = xs[ind]
    x2 = x2[ind]
    xmax = xs[pdf.argmax()]

    assert np.isclose(xmax, summary[1], atol=0.05)
    assert np.isclose(x0, summary[0], atol=0.05)
    assert np.isclose(x2, summary[2], atol=0.05)

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_summary_max_shortest_3(self):
c = ChainConsumer()
c.add_chain(self.data_skew)
summary_area = 0.95
c.configure(statistics=“max_shortest”, bins=1.0, summary_area=summary_area)
summary = c.analysis.get_summary()[‘0’]

    xs = np.linspace(-1, 5, 1000)
    pdf = skewnorm.pdf(xs, 5, 1, 1.5)
    cdf = skewnorm.cdf(xs, 5, 1, 1.5)
    x2 = interp1d(cdf, xs, bounds_error=False, fill_value=np.inf)(cdf + summary_area)
    dist = x2 - xs
    ind = np.argmin(dist)
    x0 = xs[ind]
    x2 = x2[ind]
    xmax = xs[pdf.argmax()]

    assert np.isclose(xmax, summary[1], atol=0.05)
    assert np.isclose(x0, summary[0], atol=0.05)
    assert np.isclose(x2, summary[2], atol=0.05)

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_summary_max_central_2(self):
c = ChainConsumer()
c.add_chain(self.data_skew)
summary_area = 0.6827
c.configure(statistics=“max_central”, bins=1.0, summary_area=summary_area)
summary = c.analysis.get_summary()[‘0’]

    xs = np.linspace(-1, 5, 1000)
    pdf = skewnorm.pdf(xs, 5, 1, 1.5)
    cdf = skewnorm.cdf(xs, 5, 1, 1.5)
    xval = interp1d(cdf, xs)([0.5 - 0.5 * summary_area, 0.5 + 0.5 * summary_area])
    xmax = xs[pdf.argmax()]

    assert np.isclose(xmax, summary[1], atol=0.05)
    assert np.isclose(xval[0], summary[0], atol=0.05)
    assert np.isclose(xval[1], summary[2], atol=0.05)

项目:pyglmnet 作者:glm-tools | 项目源码 | 文件源码
def _logL(distr, y, y_hat):
“”“The log likelihood.”""
if distr in [‘softplus’, ‘poisson’]:
eps = np.spacing(1)
logL = np.sum(y * np.log(y_hat + eps) - y_hat)
elif distr == ‘gaussian’:
logL = -0.5 * np.sum((y - y_hat)**2)
elif distr == ‘binomial’:
# analytical formula
logL = np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat))

    # but this prevents underflow
    # z = beta0 + np.dot(X, beta)
    # logL = np.sum(y * z - np.log(1 + np.exp(z)))
elif distr == 'probit':
    logL = np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat))
elif distr == 'gamma':
    # see
    # https://www.statistics.ma.tum.de/fileadmin/w00bdb/www/czado/lec8.pdf
    nu = 1.  # shape parameter, exponential for now
    logL = np.sum(nu * (-y / y_hat - np.log(y_hat)))
return logL

项目:DW-POSSUM 作者:marksgraham | 项目源码 | 文件源码
def add_motion_spikes(motion_mat,frequency,severity,TR):
time = motion_mat[:,0]
max_translation = 5 * severity / 1000 * np.sqrt(2np.pi)#Max translations in m, factor of sqrt(2pi) accounts for normalisation factor in norm.pdf later on
max_rotation = np.radians(5 * severity) np.sqrt(2np.pi) #Max rotation in rad
time_blocks = np.floor(time[-1]/TR).astype(np.int32)
for i in range(time_blocks):
if np.random.uniform(0,1) < frequency: #Decide whether to add spike
for j in range(1,4):
if np.random.uniform(0,1) < 1/6:
motion_mat[:,j] = motion_mat[:,j]
+ max_translation * random.uniform(-1,1)
* norm.pdf(time,loc = (i+0.5)*TR,scale = TR/5)
for j in range(4,7):
if np.random.uniform(0,1) < 1/6:
motion_mat[:,j] = motion_mat[:,j]
+ max_rotation * random.uniform(-1,1)
* norm.pdf(time,loc = (i+0.5 + np.random.uniform(-0.25,-.25))*TR,scale = TR/5)
return motion_mat

项目:MarkovModels 作者:pmontalb | 项目源码 | 文件源码
def calculate_vega(forward, strike, implied_sigma, annuity, days_to_maturity):
“”" This function returns Vega, which is the same for both payer/receiver
:param forward:
:param strike:
:param implied_sigma:
:param annuity:
:param days_to_maturity:
:return:
“”"
from scipy.stats import norm
from math import sqrt
d1 = calculate_d1(forward, strike, implied_sigma, days_to_maturity)
year_fraction = float(days_to_maturity) / 365
vega = annuity * forward * sqrt(year_fraction) * norm.pdf(d1)

return vega

项目:wide-deep-cnn 作者:DaniUPC | 项目源码 | 文件源码
def manual_loss(self, logits, targets, K):
“”" Computes the Gaussian Mixture Loss out of the graph computation “”"
mixs, sigmas, means = logits[:, 0:K], logits[:, K:2K], logits[:, 2K:]
mixs = np.exp(mixs)/np.sum(np.exp(mixs)) # Apply softmax
sigmas = np.exp(sigmas)
# Compute over all instances
logexps = []
for i in range(self.batch_size):
sumexp = np.sum(
[
mixs[:, k] *
norm.pdf(targets[i], means[i, k], sigmas[i, k])
for k in range(K)
]
)
logexps.append(np.log(sumexp))
return -np.mean(logexps)

项目:pyGPGO 作者:hawk31 | 项目源码 | 文件源码
def ExpectedImprovement(self, tau, mean, std):
“”"
Expected Improvement acquisition function.

    Parameters
    ----------
    tau: float
        Best observed function evaluation.
    mean: float
        Point mean of the posterior process.
    std: float
        Point std of the posterior process.

    Returns
    -------
    float
        Expected improvement.
    """
    z = (mean - tau - self.eps) / (std + self.eps)
    return (mean - tau) * norm.cdf(z) + std * norm.pdf(z)[0]

项目:pyGPGO 作者:hawk31 | 项目源码 | 文件源码
def tExpectedImprovement(self, tau, mean, std, nu=3.0):
“”"
Expected Improvement acquisition function. Only to be used with tStudentProcess surrogate.

    Parameters
    ----------
    tau: float
        Best observed function evaluation.
    mean: float
        Point mean of the posterior process.
    std: float
        Point std of the posterior process.

    Returns
    -------
    float
        Expected improvement.
    """
    gamma = (mean - tau - self.eps) / (std + self.eps)
    return gamma * std * t.cdf(gamma, df=nu) + std * (1 + (gamma ** 2 - 1)/(nu - 1)) * t.pdf(gamma, df=nu)

项目:Gaussian_process 作者:happyjin | 项目源码 | 文件源码
def EI(params, means, stand_devi, parms_done, y, n_iterations, k):
“”"
Expected Improvement acquisition function
:param params: test data
:param means: GP posterior mean
:param stand_devi: standard deviation
:param parms_done: training data
:param y: training targets
:return: next point that need to pick up
“”"
s = 0.0005 # small value
max_mean = np.max(y)

f_max = max_mean + s
z = (means - f_max) / stand_devi
EI_vector = (means - f_max) * norm.cdf(z) + stand_devi * norm.pdf(z)
max_index = np.where(EI_vector == np.max(EI_vector))
next_point = params[max_index]
if k == n_iterations-1:
    plt.subplot(2, 1, 2)
    plt.plot(params, EI_vector, label='EI')
    plt.legend(loc=3)
return next_point

项目:the-neural-perspective 作者:GokuMohandas | 项目源码 | 文件源码
def plot_data_and_D(sess, model, FLAGS):

# True data distribution with untrained D
f, ax = plt.subplots(1)

# p_data
X = np.linspace(int(FLAGS.mu-3.0*FLAGS.sigma),
                int(FLAGS.mu+3.0*FLAGS.sigma),
                FLAGS.num_points)
y = norm.pdf(X, loc=FLAGS.mu, scale=FLAGS.sigma)
ax.plot(X, y, label='p_data')

# Untrained p_discriminator
untrained_D = np.zeros((FLAGS.num_points,1))
for i in range(FLAGS.num_points/FLAGS.batch_size):
    batch_X = np.reshape(
        X[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)],
        (FLAGS.batch_size,1))
    untrained_D[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)] = \
        sess.run(model.D,
            feed_dict={model.pretrained_inputs: batch_X})
ax.plot(X, untrained_D, label='untrained_D')

plt.legend()
plt.show()

项目:the-neural-perspective 作者:GokuMohandas | 项目源码 | 文件源码
def plot_data_and_D(sess, model, FLAGS):

# True data distribution with untrained D
f, ax = plt.subplots(1)

# p_data
X = np.linspace(int(FLAGS.mu-3.0*FLAGS.sigma),
                int(FLAGS.mu+3.0*FLAGS.sigma),
                FLAGS.num_points)
y = norm.pdf(X, loc=FLAGS.mu, scale=FLAGS.sigma)
ax.plot(X, y, label='p_data')

# Untrained p_discriminator
untrained_D = np.zeros((FLAGS.num_points,1))
for i in range(FLAGS.num_points/FLAGS.batch_size):
    batch_X = np.reshape(
        X[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)],
        (FLAGS.batch_size,1))
    untrained_D[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)] = \
        sess.run(model.D,
            feed_dict={model.pretrained_inputs: batch_X})
ax.plot(X, untrained_D, label='untrained_D')

plt.legend()
plt.show()

项目:the-neural-perspective 作者:GokuMohandas | 项目源码 | 文件源码
def plot_data_and_D(sess, model, FLAGS):

# True data distribution with untrained D
f, ax = plt.subplots(1)

# p_data
X = np.linspace(int(FLAGS.mu-3.0*FLAGS.sigma),
                int(FLAGS.mu+3.0*FLAGS.sigma),
                FLAGS.num_points)
y = norm.pdf(X, loc=FLAGS.mu, scale=FLAGS.sigma)
ax.plot(X, y, label='p_data')

# Untrained p_discriminator
untrained_D = np.zeros((FLAGS.num_points,1))
for i in range(FLAGS.num_points/FLAGS.batch_size):
    batch_X = np.reshape(
        X[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)],
        (FLAGS.batch_size,1))
    untrained_D[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)] = \
        sess.run(model.D,
            feed_dict={model.pretrained_inputs: batch_X})
ax.plot(X, untrained_D, label='D')

plt.legend()
plt.show()

项目:PyCS 作者:COSMOGRAIL | 项目源码 | 文件源码
def combigauss(subtds, subtderrs, truetds, lensmodelsigma = 0.0):
“”"
Give me submission delays and error bars, as well as the corresponding true delays, in form of numpy arrays.
I compute the mean and sigma of the combined posterior on the fractional time delay distance error.
“”"

from scipy.stats import norm

subtdoffs = subtds - truetds
centers = subtdoffs/truetds
sigmas = subtderrs/np.fabs(truetds)

# We convolve with the lensmodelsigma:
sigmas = np.sqrt(sigmas**2 + lensmodelsigma**2)

sigma_combi = 1.0 / np.sqrt(np.sum(1.0 / (sigmas**2)))
center_combi = sigma_combi**2 * np.sum( centers/sigmas**2 )

probazero = norm.pdf(0.0, center_combi, sigma_combi)

return (center_combi, sigma_combi, probazero)

# To plot this you could do:
#plt.plot(x, norm.pdf(x, center_combi, sigma_combi), ls="--", color="black")

项目:slam-tutorial-code 作者:tuongngoc | 项目源码 | 文件源码
def probability_of_measurement(self, measurement, predicted_measurement):
“”“Given a measurement and a predicted measurement, computes
probability.”""
# Compute differences to real measurements.
sigma_d = self.measurement_distance_stddev
sigma_alpha = self.measurement_angle_stddev

    z = np.array(measurement)
    pred_z = np.array(predicted_measurement)
    z[1] = atan2(sin(z[1]), cos(z[1]))
    pred_z[1] = atan2(sin(pred_z[1]), cos(pred_z[1]))

    delta = z - pred_z
    delta[1] = atan2(sin(delta[1]), cos(delta[1]))

    P_d = normal_dist.pdf(delta[0], 0, sigma_d)
    P_alpha = normal_dist.pdf(delta[1], 0, sigma_alpha)

    return P_d * P_alpha

项目:slam-tutorial-code 作者:tuongngoc | 项目源码 | 文件源码
def probability_of_measurement(self, measurement, predicted_measurement):
“”“Given a measurement and a predicted measurement, computes
probability.”""
# Compute differences to real measurements.
sigma_d = self.measurement_distance_stddev
sigma_alpha = self.measurement_angle_stddev

    z = np.array(measurement)
    pred_z = np.array(predicted_measurement)
    z[1] = atan2(sin(z[1]), cos(z[1]))
    pred_z[1] = atan2(sin(pred_z[1]), cos(pred_z[1]))

    delta = z - pred_z
    delta[1] = atan2(sin(delta[1]), cos(delta[1]))

    P_d = normal_dist.pdf(delta[0], 0, sigma_d)
    P_alpha = normal_dist.pdf(delta[1], 0, sigma_alpha)

    return P_d * P_alpha

项目:slam-tutorial-code 作者:tuongngoc | 项目源码 | 文件源码
def probability_of_measurement(self, measurement, predicted_measurement):
“”“Given a measurement and a predicted measurement, computes
probability.”""
# Compute differences to real measurements.
sigma_d = self.measurement_distance_stddev
sigma_alpha = self.measurement_angle_stddev

    z = np.array(measurement)
    pred_z = np.array(predicted_measurement)
    z[1] = atan2(sin(z[1]), cos(z[1]))
    pred_z[1] = atan2(sin(pred_z[1]), cos(pred_z[1]))

    delta = z - pred_z
    delta[1] = atan2(sin(delta[1]), cos(delta[1]))

    P_d = normal_dist.pdf(delta[0], 0, sigma_d)
    P_alpha = normal_dist.pdf(delta[1], 0, sigma_alpha)

    return P_d * P_alpha

项目:crnn_tf 作者:liuhu-bigeye | 项目源码 | 文件源码
def initiate_estimations(self):
self.estimations.close()
self.estimations = h5py.File(self.estimate_path, ‘a’)

    scale = 0.5
    eps = 1e-3
    # estimation shape (n_sample, max_h_len, max_t_len + 1)
    for idx in range(self.n_samples):
        token = self.tokens[idx]
        t_len = len(token)
        h_len = int(np.ceil(float(self.db['end_index'][idx] - self.db['begin_index'][idx] - self.c3d_depth) / float(self.depth_stride))) + 1

        steps = np.linspace(0, h_len-1, t_len)
        esti = [np.ones(h_len)[:, None]*eps] + [norm.pdf(np.arange(h_len)[:, None], loc=round(l), scale=scale) for l in steps]
        esti = np.hstack(esti)

        self.estimations[self.estimate_key][idx, :h_len, :t_len + 1] = copy.deepcopy(esti / esti.sum(axis=-1)[:, None] * 0.9)
    self.estimations.close()
    self.estimations = h5py.File(self.estimate_path, 'a')

项目:Machine-Learning-Projects 作者:poke19962008 | 项目源码 | 文件源码
def featureMapHist(lang=‘py’, normed=True):
freq = getValue(lang, type=‘freq’)
raw = np.array([])

for i in xrange(len(freq)):
    raw = np.append(raw, [i]*freq[i])
print "[SUCCESS] Calculated raw for", lang

(mu, sigma) = np.mean(raw), np.std(raw)
pdf = norm.pdf(raw, mu, sigma)

if not normed:
    plt.plot(raw, pdf, label="%s"%lang)
else:
    ax = fig.add_subplot(3, 2, langs.index(lang)+1)
    plt.plot(raw, pdf)
    ax.hist(raw, normed=True, alpha=0.75)
    ax.set_title(lang)

项目:Bayesian-Optimisation 作者:hyperc54 | 项目源码 | 文件源码
def updateInterface1D(self,solver,bbox,history,bounds):
x = np.linspace(0, 1, 80)
z=map(lambda y:bbox.queryAt([y]),x)
xx=np.atleast_2d(x).T
z_pred, sigma2_pred = solver.gp.predict(xx, eval_MSE=True)
self.ax_scat.clear()
self.ax_approx.clear()
self.ax_eimap.clear()

    self.ax_scat.plot(x,np.array(z))
    self.ax_scat.scatter(np.array(history)[:,0],np.array(history)[:,1])
    self.ax_approx.plot(x,np.array(z_pred))
    self.ax_approx.fill_between(x,np.array(z_pred)+np.array(np.sqrt(sigma2_pred)),np.array(z_pred)-np.array(np.sqrt(sigma2_pred)),alpha=0.2)

    self.ax_approx.plot(x)
    target=min(np.array(history)[:,1])
    mean,variance=solver.gp.predict(xx,eval_MSE=True)
    z=(target-mean)/np.sqrt(variance)
    self.ax_approx.plot(x,np.sqrt(variance)*(z*norm.cdf(z)+norm.pdf(z)))

项目:Bayesian-Optimisation 作者:hyperc54 | 项目源码 | 文件源码
def update_interface_1D(ax,ax2,solver,bbox,history):
x = np.linspace(0, 1, 80)
z=map(lambda y:bbox.queryAt([y]),x)
xx=np.atleast_2d(x).T
z_pred, sigma2_pred = solver.gp.predict(xx, eval_MSE=True)
ax.clear()
ax2.clear()
ax.plot(x,np.array(z))
ax.scatter(np.array(history)[:,0],np.array(history)[:,1])
ax2.plot(x,np.array(z_pred))
ax2.fill_between(x,np.array(z_pred)+np.array(np.sqrt(sigma2_pred)),np.array(z_pred)-np.array(np.sqrt(sigma2_pred)),alpha=0.2)
ax.set_xlim([0,1])
ax2.set_xlim([0,1])
ax2.plot(x)
target=min(np.array(history)[:,1])
mean,variance=solver.gp.predict(xx,eval_MSE=True)
z=(target-mean)/np.sqrt(variance)
ax2.plot(x,np.sqrt(variance)(znorm.cdf(z)+norm.pdf(z)))

项目:Bayesian-Optimisation 作者:hyperc54 | 项目源码 | 文件源码
def update_interface_2D(ax,ax2,ax3,solver,bbox,history):
x = np.linspace(0, 1, 200)
y = np.linspace(0, 1, 200)
x,y=np.meshgrid(x, y)
xx=x.ravel()
yy=y.ravel()
#z=map(lambda x:bbox.queryAt(x),[np.array(i) for i in zip(xx,yy)])
points_pred= np.array(map(lambda s:np.array(s),zip(xx,yy)))
z_pred, sigma2_pred = solver.gp.predict(points_pred, eval_MSE=True)
#target=min(map(lambda x:bbox.queryAt(x),[np.array(i) for i in history]))
target=min(list(np.array(history)[:,1]))
u=(target-z_pred)/np.sqrt(sigma2_pred)
ax.clear()
ax2.clear()
#c1=ax.contourf(x,y,np.array(z).reshape(-1,len(x[0])))
tt=np.array(map(np.asarray,np.array(history).reshape(-1,2)[:,0]))
ax.scatter(tt[:,0],tt[:,1])

c2=ax2.contourf(x,y,np.array(z_pred).reshape(-1,len(x[0])))
c3=ax3.contourf(x,y,np.array(np.sqrt(sigma2_pred)*(u*norm.cdf(u)+norm.pdf(u))).reshape(-1,len(x[0])))
ax2.scatter(tt[:,0],tt[:,1])
ax3.scatter(tt[:,0],tt[:,1])
#c1.set_clim(min(z),max(z))
#c2.set_clim(min(z),max(z))

项目:the-neural-perspective 作者:johnsonc | 项目源码 | 文件源码
def plot_data_and_D(sess, model, FLAGS):

# True data distribution with untrained D
f, ax = plt.subplots(1)

# p_data
X = np.linspace(int(FLAGS.mu-3.0*FLAGS.sigma),
                int(FLAGS.mu+3.0*FLAGS.sigma),
                FLAGS.num_points)
y = norm.pdf(X, loc=FLAGS.mu, scale=FLAGS.sigma)
ax.plot(X, y, label='p_data')

# Untrained p_discriminator
untrained_D = np.zeros((FLAGS.num_points,1))
for i in range(FLAGS.num_points/FLAGS.batch_size):
    batch_X = np.reshape(
        X[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)],
        (FLAGS.batch_size,1))
    untrained_D[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)] = \
        sess.run(model.D,
            feed_dict={model.pretrained_inputs: batch_X})
ax.plot(X, untrained_D, label='untrained_D')

plt.legend()
plt.show()

项目:the-neural-perspective 作者:johnsonc | 项目源码 | 文件源码
def plot_data_and_D(sess, model, FLAGS):

# True data distribution with untrained D
f, ax = plt.subplots(1)

# p_data
X = np.linspace(int(FLAGS.mu-3.0*FLAGS.sigma),
                int(FLAGS.mu+3.0*FLAGS.sigma),
                FLAGS.num_points)
y = norm.pdf(X, loc=FLAGS.mu, scale=FLAGS.sigma)
ax.plot(X, y, label='p_data')

# Untrained p_discriminator
untrained_D = np.zeros((FLAGS.num_points,1))
for i in range(FLAGS.num_points/FLAGS.batch_size):
    batch_X = np.reshape(
        X[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)],
        (FLAGS.batch_size,1))
    untrained_D[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)] = \
        sess.run(model.D,
            feed_dict={model.pretrained_inputs: batch_X})
ax.plot(X, untrained_D, label='untrained_D')

plt.legend()
plt.show()

项目:the-neural-perspective 作者:johnsonc | 项目源码 | 文件源码
def plot_data_and_D(sess, model, FLAGS):

# True data distribution with untrained D
f, ax = plt.subplots(1)

# p_data
X = np.linspace(int(FLAGS.mu-3.0*FLAGS.sigma),
                int(FLAGS.mu+3.0*FLAGS.sigma),
                FLAGS.num_points)
y = norm.pdf(X, loc=FLAGS.mu, scale=FLAGS.sigma)
ax.plot(X, y, label='p_data')

# Untrained p_discriminator
untrained_D = np.zeros((FLAGS.num_points,1))
for i in range(FLAGS.num_points/FLAGS.batch_size):
    batch_X = np.reshape(
        X[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)],
        (FLAGS.batch_size,1))
    untrained_D[FLAGS.batch_size*i:FLAGS.batch_size*(i+1)] = \
        sess.run(model.D,
            feed_dict={model.pretrained_inputs: batch_X})
ax.plot(X, untrained_D, label='D')

plt.legend()
plt.show()

项目:SLAM 作者:jfjensen | 项目源码 | 文件源码
def probability_of_measurement(self, measurement, predicted_measurement):
“”“Given a measurement and a predicted measurement, computes
probability.”""
# Compute differences to real measurements.
d_true, alpha_true = measurement
d_pred, alpha_pred = predicted_measurement

    # --->>> Compute difference in distance and bearing angle.
    d_diff = abs(d_pred - d_true)
    alpha_diff = (alpha_pred - alpha_true + pi) % (2 * pi) - pi

    # Important: make sure the angle difference works correctly and does
    # not return values offset by 2 pi or - 2 pi.
    # You may use the following Gaussian PDF function:
    # scipy.stats.norm.pdf(x, mu, sigma). With the import in the header,
    # this is normal_dist.pdf(x, mu, sigma).
    p_d = normal_dist.pdf(d_diff, 0, self.measurement_distance_stddev)
    p_alpha = normal_dist.pdf(alpha_diff, 0, self.measurement_angle_stddev)

    # Note that the two parameters sigma_d and sigma_alpha discussed
    # in the lecture are self.measurement_distance_stddev and
    # self.measurement_angle_stddev.
    return p_d * p_alpha

项目:SLAM 作者:jfjensen | 项目源码 | 文件源码
def probability_of_measurement(self, measurement, predicted_measurement):
“”“Given a measurement and a predicted measurement, computes
probability.”""
# Compute differences to real measurements.
d_true, alpha_true = measurement
d_pred, alpha_pred = predicted_measurement

    # --->>> Compute difference in distance and bearing angle.
    d_diff = abs(d_pred - d_true)
    alpha_diff = (alpha_pred - alpha_true + pi) % (2 * pi) - pi

    # Important: make sure the angle difference works correctly and does
    # not return values offset by 2 pi or - 2 pi.
    # You may use the following Gaussian PDF function:
    # scipy.stats.norm.pdf(x, mu, sigma). With the import in the header,
    # this is normal_dist.pdf(x, mu, sigma).
    p_d = normal_dist.pdf(d_diff, 0, self.measurement_distance_stddev)
    p_alpha = normal_dist.pdf(alpha_diff, 0, self.measurement_angle_stddev)

    # Note that the two parameters sigma_d and sigma_alpha discussed
    # in the lecture are self.measurement_distance_stddev and
    # self.measurement_angle_stddev.
    return p_d * p_alpha

项目:SLAM 作者:jfjensen | 项目源码 | 文件源码
def probability_of_measurement(self, measurement, predicted_measurement):
“”“Given a measurement and a predicted measurement, computes
probability.”""
# Compute differences to real measurements.
d_true, alpha_true = measurement
d_pred, alpha_pred = predicted_measurement

    # --->>> Compute difference in distance and bearing angle.
    d_diff = abs(d_pred - d_true)
    alpha_diff = (alpha_pred - alpha_true + pi) % (2 * pi) - pi

    # Important: make sure the angle difference works correctly and does
    # not return values offset by 2 pi or - 2 pi.
    # You may use the following Gaussian PDF function:
    # scipy.stats.norm.pdf(x, mu, sigma). With the import in the header,
    # this is normal_dist.pdf(x, mu, sigma).
    p_d = normal_dist.pdf(d_diff, 0, self.measurement_distance_stddev)
    p_alpha = normal_dist.pdf(alpha_diff, 0, self.measurement_angle_stddev)

    # Note that the two parameters sigma_d and sigma_alpha discussed
    # in the lecture are self.measurement_distance_stddev and
    # self.measurement_angle_stddev.
    return p_d * p_alpha

项目:patchmatch 作者:samyblusseau | 项目源码 | 文件源码
def dissimilarity_weights(m):
w = int((m-1)/2)
v = range(-w, w+1)
[x, y] = meshgrid(v, v)
g=norm.pdf(x)*norm.pdf(y)
return g

项目:kernel_goodness_of_fit 作者:karlnapf | 项目源码 | 文件源码
def test_austerity(self):
np.random.seed(SEED)
X = gen_X(SAMPLE_SIZE)

    def vectorized_log_lik(X,theta):
        return _vector_of_log_likelihoods(theta[0],theta[1],X)

    def log_density_prior(theta):
        return np.log(norm.pdf(theta[0],0, SIGMA_1)) + np.log(norm.pdf(theta[1],0, SIGMA_2))


    sample,_ = austerity(vectorized_log_lik,log_density_prior, X,0.01,batch_size=50,chain_size=10, thinning=1, theta_t=np.random.randn(2))
    assert_almost_equal(np.array([-0.2554517,  1.3805683]),sample[-1])

项目:kernel_goodness_of_fit 作者:karlnapf | 项目源码 | 文件源码
def _vector_of_log_likelihoods(theta_1, theta_2, x):
lik = np.log(0.5 * norm.pdf(x, theta_1, SIGMA_x) + 0.5 * norm.pdf(x, theta_1 + theta_2, SIGMA_x))
return lik

项目:kernel_goodness_of_fit 作者:karlnapf | 项目源码 | 文件源码
def _log_probability(theta_1,theta_2,x):
log_lik = _log_lik(theta_1, theta_2, x)

log_prior = np.log(norm.pdf(theta_1,0, SIGMA_1)) + np.log(norm.pdf(theta_2,0, SIGMA_2))

return log_lik+log_prior

项目:kernel_goodness_of_fit 作者:karlnapf | 项目源码 | 文件源码
def log_density_prior(theta):
return np.log(norm.pdf(theta[0],0, SIGMA_1)) + np.log(norm.pdf(theta[1],0, SIGMA_2))

项目:kernel_goodness_of_fit 作者:karlnapf | 项目源码 | 文件源码
def log_density_prior(theta):
return np.log(norm.pdf(theta[0],0, SIGMA_1)) + np.log(norm.pdf(theta[1],0, SIGMA_2))

项目:BISIP 作者:clberube | 项目源码 | 文件源码
def plot_deviance(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
if save_as_png:
save_as = ‘png’
else:
save_as = ‘pdf’
filename = sol.filename.replace("\", “/”).split("/")[-1].split(".")[0]
model = get_model_type(sol)
if draw or save:
fig, ax = plt.subplots(figsize=(4,3))
deviance = sol.MDL.trace(‘deviance’)[:]
sampler_state = sol.MDL.get_state()[“sampler”]
x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
plt.plot(x, deviance, “-”, color=“C3”, label=“Model deviance\nDIC = %.2f\nBPIC = %.2f” %(sol.MDL.DIC,sol.MDL.BPIC))
plt.xlabel(“Iteration”)
plt.ylabel(“Model deviance”)
plt.legend(numpoints=1, loc=“best”, fontsize=9)
plt.grid(‘on’)
if sampler_state["_burn"] == 0:
plt.xscale(‘log’)
else:
plt.ticklabel_format(style=‘sci’, axis=‘x’, scilimits=(0,0))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.tight_layout()
if save:
save_where = ‘/Figures/ModelDeviance/’
working_path = getcwd().replace("\", “/”)+"/"
save_path = working_path+save_where
print("\nSaving model deviance figure in:\n", save_path)
if not path.exists(save_path):
makedirs(save_path)
fig.savefig(save_path+‘ModelDeviance-%s-%s.%s’%(model,filename,save_as), dpi=fig_dpi, bbox_inches=‘tight’)
try: plt.close(fig)
except: pass
if draw: return fig
else: return None

项目:BISIP 作者:clberube | 项目源码 | 文件源码
def plot_logp(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
if save_as_png:
save_as = ‘png’
else:
save_as = ‘pdf’
filename = sol.filename.replace("\", “/”).split("/")[-1].split(".")[0]
model = get_model_type(sol)
if draw or save:
fig, ax = plt.subplots(figsize=(4,3))
logp = logp_trace(sol.MDL)
sampler_state = sol.MDL.get_state()[“sampler”]
x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
plt.plot(x, logp, “-”, color=“C3”)
plt.xlabel(“Iteration”)
plt.ylabel(“Log-likelihood”)
plt.legend(numpoints=1, loc=“best”, fontsize=9)
plt.grid(‘on’)
if sampler_state["_burn"] == 0:
plt.xscale(‘log’)
else:
plt.ticklabel_format(style=‘sci’, axis=‘x’, scilimits=(0,0))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.tight_layout()
if save:
save_where = ‘/Figures/LogLikelihood/’
working_path = getcwd().replace("\", “/”)+"/"
save_path = working_path+save_where
print("\nSaving logp trace figure in:\n", save_path)
if not path.exists(save_path):
makedirs(save_path)
fig.savefig(save_path+‘LogLikelihood-%s-%s.%s’%(model,filename,save_as), dpi=fig_dpi, bbox_inches=‘tight’)
try: plt.close(fig)
except: pass
if draw: return fig
else: return None

项目:BISIP 作者:clberube | 项目源码 | 文件源码
def plot_deviance(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
if save_as_png:
save_as = ‘png’
else:
save_as = ‘pdf’
filename = sol.filename.replace("\", “/”).split("/")[-1].split(".")[0]
model = get_model_type(sol)
if draw or save:
fig, ax = plt.subplots(figsize=(4,3))
deviance = sol.MDL.trace(‘deviance’)[:]
sampler_state = sol.MDL.get_state()[“sampler”]
x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
plt.plot(x, deviance, “-”, color=“C3”, label=“Model deviance\nDIC = %.2f\nBPIC = %.2f” %(sol.MDL.DIC,sol.MDL.BPIC))
plt.xlabel(“Iteration”)
plt.ylabel(“Model deviance”)
plt.legend(numpoints=1, loc=“best”)
plt.grid(‘on’)
if sampler_state["_burn"] == 0:
plt.xscale(‘log’)
else:
plt.ticklabel_format(style=‘sci’, axis=‘x’, scilimits=(0,0))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.tight_layout()
if save:
save_where = ‘/Figures/ModelDeviance/’
working_path = getcwd().replace("\", “/”)+"/"
save_path = working_path+save_where
print("\nSaving model deviance figure in:\n", save_path)
if not path.exists(save_path):
makedirs(save_path)
fig.savefig(save_path+‘ModelDeviance-%s-%s.%s’%(model,filename,save_as), dpi=fig_dpi, bbox_inches=‘tight’)
try: plt.close(fig)
except: pass
if draw: return fig
else: return None

项目:BISIP 作者:clberube | 项目源码 | 文件源码
def plot_logp(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
if save_as_png:
save_as = ‘png’
else:
save_as = ‘pdf’
filename = sol.filename.replace("\", “/”).split("/")[-1].split(".")[0]
model = get_model_type(sol)
if draw or save:
fig, ax = plt.subplots(figsize=(4,3))
logp = logp_trace(sol.MDL)
sampler_state = sol.MDL.get_state()[“sampler”]
x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
plt.plot(x, logp, “-”, color=“C3”)
plt.xlabel(“Iteration”)
plt.ylabel(“Log-likelihood”)
plt.legend(numpoints=1, loc=“best”)
plt.grid(‘on’)
if sampler_state["_burn"] == 0:
plt.xscale(‘log’)
else:
plt.ticklabel_format(style=‘sci’, axis=‘x’, scilimits=(0,0))
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.tight_layout()
if save:
save_where = ‘/Figures/LogLikelihood/’
working_path = getcwd().replace("\", “/”)+"/"
save_path = working_path+save_where
print("\nSaving logp trace figure in:\n", save_path)
if not path.exists(save_path):
makedirs(save_path)
fig.savefig(save_path+‘LogLikelihood-%s-%s.%s’%(model,filename,save_as), dpi=fig_dpi, bbox_inches=‘tight’)
try: plt.close(fig)
except: pass
if draw: return fig
else: return None

项目:wallstreet 作者:mcdallas | 项目源码 | 文件源码
def _fprime(self, sigma):
logSoverK = log(self.S/self.K)
n12 = ((self.r + sigma**2/2)self.T)
numerd1 = logSoverK + n12
d1 = numerd1/(sigma
sqrt(self.T))
return self.S*sqrt(self.T)*norm.pdf(d1)exp(-self.rself.T)

项目:CRN_ProbabilisticInversion 作者:elaloy | 项目源码 | 文件源码
def CompPrior(X,MCPar):

prior=np.ones((X.shape[0],1))
log_prior=np.zeros((X.shape[0],1))
for ii in xrange(0,X.shape[0]):
    if (MCPar.Prior[0:9]=='Prior_CRN'):
        # Uniform prior for Ninh
        prior[ii,0] = 1.0/(MCPar.ub[0,MCPar.idx_unif2]-MCPar.lb[0,MCPar.idx_unif2])
        log_prior[ii,0]=np.log(prior[ii,0])

        # Uniform prior for Age
        prior[ii,0] = 1.0/(MCPar.ub[0,MCPar.idx_unif1]-MCPar.lb[0,MCPar.idx_unif1])
        log_prior[ii,0]=np.log(prior[ii,0])

        if (MCPar.Prior[10]=='1'): # Gaussian prior for erosion rate
            prior[ii,0] = prior[ii,0]*norm.pdf(X[ii,MCPar.idx_norm],MCPar.pmu,MCPar.psd)
            log_prior[ii,0]+=np.log(prior[ii,0])
        else: # Uniform prior for erosion rate
            prior[ii,0] = prior[ii,0]*(1.0/(MCPar.ub[0,MCPar.idx_unif0]-MCPar.lb[0,MCPar.idx_unif0]))
            log_prior[ii,0]+=np.log(prior[ii,0])

        # Check log_p for inf
        if np.isinf(log_prior[ii,0])==True:
            log_prior[ii,0]=1e-200
    else: # Uniform prior for every variable
        for jj in xrange(0,MCPar.n):
            prior[ii,0] = prior[ii,0]*(1.0/(MCPar.ub[0,jj]-MCPar.lb[0,jj])) 
            log_prior[ii,0]+=np.log(prior[ii,0])
return prior, log_prior

项目:Psi-staircase 作者:NNiehof | 项目源码 | 文件源码
def __genprior(self, x, distr=‘uniform’, mu=0, sig=1):
“”"Generate prior probability distribution for variable.

    Arguments
    ---------
        x   :  1D numpy array (float64)
                points to evaluate the density at.

        distr :  string
                Distribution to use a prior :
                    'uniform'   (default) discrete uniform distribution

                    'normal'   normal distribution

                    'gamma'    gamma distribution

                    'beta'     beta distribution

        mu :  scalar float
            first parameter of distr distribution (check scipy for parameterization)

        sig : scalar float
            second parameter of distr distribution

    Returns
    -------
    1D numpy array of prior probabilities (unnormalized)
    """
    if distr == 'uniform':
        nx = len(x)
        p = np.ones(nx) / nx
    elif distr == 'normal':
        p = norm.pdf(x, mu, sig)
    elif distr == 'beta':
        p = beta.pdf(x, mu, sig)
    elif distr == 'gamma':
        p = gamma.pdf(x, mu, scale=sig)
    else:
        nx = len(x)
        p = np.ones(nx) / nx
    return p

项目:Psi-staircase 作者:NNiehof | 项目源码 | 文件源码
def __entropy(self, pdf):
“”"Calculate shannon entropy of posterior distribution.
Arguments
---------
pdf : ndarray (float64)
posterior distribution of psychometric curve parameters for each stimuli

    Returns
    -------
    1D numpy array (float64) : Shannon entropy of posterior for each stimuli
    """
    # Marginalize out all nuisance parameters, i.e. all except alpha and sigma
    postDims = np.ndim(pdf)
    if self.marginalize == True:
        while postDims > 3:  # marginalize out second-to-last dimension, last dim is x
            pdf = np.sum(pdf, axis=-2)
            postDims -= 1
    # find expected entropy, suppress divide-by-zero and invalid value warnings
    # as this is handled by the NaN redefinition to 0
    with np.errstate(divide='ignore', invalid='ignore'):
        entropy = np.multiply(pdf, np.log(pdf))
    entropy[np.isnan(entropy)] = 0  # define 0*log(0) to equal 0
    dimSum = tuple(range(postDims - 1))  # dimensions to sum over. also a Chinese dish
    entropy = -(np.sum(entropy, axis=dimSum))
    return entropy

项目:Psi-staircase 作者:NNiehof | 项目源码 | 文件源码
def minEntropyStim(self):
“”"Find the stimulus intensity based on the expected information gain.

    Minimum Shannon entropy is used as selection criterion for the stimulus intensity in the upcoming trial.
    """
    self.pdf = self.pdf
    self.nX = len(self.stimRange)
    self.nDims = np.ndim(self.pdf)

    # make pdf the same dims as conditional prob table likelihood
    self.pdfND = np.expand_dims(self.pdf, axis=self.nDims)  # append new axis
    self.pdfND = np.tile(self.pdfND, (self.nX))  # tile along new axis

    # Probabilities of response r (succes, failure) after presenting a stimulus
    # with stimulus intensity x at the next trial, multiplied with the prior (pdfND)
    self.pTplus1success = np.multiply(self.likelihood, self.pdfND)
    self.pTplus1failure = self.pdfND - self.pTplus1success

    # Probability of success or failure given stimulus intensity x, p(r|x)
    self.sumAxes = tuple(range(self.nDims))  # sum over all axes except the stimulus intensity axis
    self.pSuccessGivenx = np.sum(self.pTplus1success, axis=self.sumAxes)
    self.pFailureGivenx = np.sum(self.pTplus1failure, axis=self.sumAxes)

    # Posterior probability of parameter values given stimulus intensity x and response r
    # p(alpha, sigma | x, r)
    self.posteriorTplus1success = self.pTplus1success / self.pSuccessGivenx
    self.posteriorTplus1failure = self.pTplus1failure / self.pFailureGivenx

    # Expected entropy for the next trial at intensity x, producing response r
    self.entropySuccess = self.__entropy(self.posteriorTplus1success)
    self.entropyFailure = self.__entropy(self.posteriorTplus1failure)
    self.expectEntropy = np.multiply(self.entropySuccess, self.pSuccessGivenx) + np.multiply(self.entropyFailure,
                                                                                             self.pFailureGivenx)
    self.minEntropyInd = np.argmin(self.expectEntropy)  # index of smallest expected entropy
    self.xCurrent = self.stimRange[self.minEntropyInd]  # stim intensity at minimum expected entropy

    self.iTrial += 1
    if self.iTrial == (self.nTrials - 1):
        self.stop = 1

项目:OptML 作者:johannespetrat | 项目源码 | 文件源码
def expected_improvement(self, optimiser, x):
mu,std = optimiser.predict([x], return_std=True)
current_best = max([score for score, params in self.hyperparam_history])
gamma = (current_best - mu[0])/std[0]
exp_improv = std[0] * (gamma * norm.cdf(gamma) + norm.pdf(gamma))
return -1 * exp_improv

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_extents_weighted():
xs = np.random.uniform(low=-4, high=4, size=100000)
weights = norm.pdf(xs)
low, high = get_extents(xs, weights)
threshold = 0.5
assert np.abs(low + 4) < threshold
assert np.abs(high - 4) < threshold

项目:ChainConsumer 作者:Samreay | 项目源码 | 文件源码
def test_megkde_1d_basic():
# Draw from normal, fit KDE, see if sampling from kde’s pdf recovers norm
np.random.seed(0)
data = np.random.normal(loc=0, scale=1.0, size=2000)
xs = np.linspace(-3, 3, 100)
ys = MegKDE(data).evaluate(xs)
cs = ys.cumsum()
cs /= cs[-1]
cs[0] = 0
samps = interp1d(cs, xs)(np.random.uniform(size=10000))
mu, std = norm.fit(samps)
assert np.isclose(mu, 0, atol=0.1)
assert np.isclose(std, 1.0, atol=0.1)


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 我了解Scipy.stats,它是一个用于统计计算的Python模块。 你好!Scipy.stats 是一个 Python 库,提供了大量用于数据分析、概率计算和统计分布的函数和类。Python Scipy.stats 是一个用于科学计算和统计分析的 Python 库。它提供了大量用于数据探索、描述性统计、概率分布和假设检验等的函数。 Scipy.stats 中包含了多种概率分布函数,包括连续型分布(如正态分布、指数分布和威布尔分布等)和离散型分布(如泊松分布和二项分布等)。此外,它还提供了许多统计函数,如假设检验、相关分析、方差分析等。 下面是一些 Scipy.stats 常用函数的示: 1. 正态分布 ```python from scipy.stats import norm # 计算正态分布概率密度函数在 x=1 处的取值 norm.pdf(1) # 计算正态分布累积分布函数在 x=1 处的取值 norm.cdf(1) # 计算给定正态分布的均值和标准差时,从 -1 到 1 区间的概率密度函数值 norm.interval(0.68, loc=0, scale=1) ``` 2. t 分布 ```python from scipy.stats import t # 计算给定 t 分布的自由度,从 -1 到 1 区间的概率密度函数值 t.interval(0.68, df=10, loc=0, scale=1) # 计算两个样本的 t 统计值和 p 值,用于假设检验 ttest_ind(sample1, sample2) ``` 3. 卡方分布 ```python from scipy.stats import chi2 # 计算给定卡方分布的自由度,从 0 到 2 区间的概率密度函数值 chi2.interval(0.68, df=5, loc=0, scale=1) # 计算卡方分布的 p 值,用于假设检验 chisquare(observed, expected) ``` 以上是 Scipy.stats 库的一些常用函数。你可以通过调用这些函数和查看其文档来进一步了解该库的使用。 ### 回答2: Python是一种广泛使用的编程语言,而Python scipy.stats是Python中的一个统计学模块。它是一个极其强大的模块,用于执行各种统计和概率分布操作。这个模块SciPy库的一部分,SciPy是一个Python库,专门用于数学、科学和工程计算。 Python scipy.stats可以用于在Python中生成各种概率分布,如正态分布、泊松分布、二项分布、t分布等等。使用它可以计算每个概率分布的概率密度、累积分布函数和逆累积分布函数。 除了概率分布之外,Python scipy.stats还提供了各种统计测量功能,如Kendall的Tau系数、Spearman的等级相关系数、Pearson的相关系数、均值、中位数、标准差等。还可以使用Python scipy.stats来进行假设检验,如单样本和双样本t检验、卡方检验等等。 Python scipy.stats还提供了一些有用的函数,如峰度(kurtosis)、偏态(skewness)、最大值、最小值和极差。将这些函数与概率分布和统计测量相关函数相结合,可以在Python中快速完成高级统计分析操作。 总的来说,Python scipy.stats对于希望利用Python进行统计分析的科学家和工程师来说是非常有用的。它提供了方便、快速和高效的数据分析工具,使得研究人员可以更简单、更迅速地实现各种复杂的统计分析操作。 ### 回答3: PythonScipy库提供了许多统计函数,其中最重要的是scipy.stats模块。在统计学和数据科学中,scipy.stats被广泛用于概率分布的计算、分位数的计算、假设检验、线性回归、方差分析等。 该模块提供了多种分布概率密度函数的计算。如,正态分布(norm)、t分布(t)、卡方分布(chi2)、F分布(f)、伽马分布(gamma)等。对于每种分布,该模块提供了一个或多个方法计算概率密度函数、累积分布函数、分位数等。除此之外,还有如半正态分布、冈分布、三角分布等其它分布概率密度函数的计算。 与此同时,该模块还可用于执行假设检验。如,在从正态分布中取样时,可以使用t检验测试样本和总体的均值是否不同。还可以使用方差分析(ANOVA)来比较不同组的平均值是否有差异。 scipy.stats模块还提供了一些关于线性回归的函数,如pearsonr和spearmanr方法可以计算线性相关系数和斯皮尔曼等级相关系数。还可以使用linregress方法进行回归分析,包括计算斜率、截距、标准错误、t值和p值。 总的来说,scipy.stats是Python科学计算的重要组成部分,对于数据科学家、研究人员等人员来说非常有用,可以方便地计算和分析各种数据分布和假设检验,并且提供了一些常见的统计函数来解决数据问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值