特征提取
ahong286286
这个作者很懒,什么都没留下…
展开
-
opencv源码解析之(6):hog源码分析 -http://www.cnblogs.com/tornadomeet
一、网上一些参考资料 在博客目标检测学习_1(用opencv自带hog实现行人检测) 中已经使用了opencv自带的函数detectMultiScale()实现了对行人的检测,当然了,该算法采用的是hog算法,那么hog算法是怎样实现的呢?这一节就来简单分析一下opencv中自带 hog源码。 网上也有不少网友对opencv中的hog源码进行了分析,很不转载 2013-07-25 15:32:26 · 4896 阅读 · 0 评论 -
目标检测的图像特征提取之(一)HOG特征——http://blog.csdn.net/zouxy09/article/details/7929348
目标检测的图像特征提取之(一)HOG特征zouxy09@qq.com1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中转载 2013-07-25 15:35:11 · 1371 阅读 · 0 评论 -
目标检测的图像特征提取之(二)LBP特征——http://blog.csdn.net/zouxy09/article/details/7929531
目标检测的图像特征提取之(二)LBP特征zouxy09@qq.com LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹转载 2013-07-25 15:36:13 · 903 阅读 · 0 评论 -
目标检测的图像特征提取之(三)Haar特征_http://blog.csdn.net/zouxy09/article/details/7929570
目标检测的图像特征提取之(三)Haar特征zouxy09@qq.com1、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板转载 2013-07-25 15:37:11 · 910 阅读 · 0 评论