问题描述:
N 朵巨大的花排一圈。这些奇异的花有着奇异的香味,乘着这花香,小可可和小薰可以从一朵花到达另一朵花。因为每朵花可能有不同的色彩,不同的花瓣数,所以从每朵花能到达的花,需要的时间也有可能不一样。但是小可可和小薰知道,从第 i 朵花能且只能到第 i+1 朵花,第 N 朵花能且只能到第 1 朵花,并他们爬上一朵花和从一朵花下来都需要时间。
小可可和小薰想在这里尽量长时间地停留,但是两人不可以在地上和花上停留,并且只能到每朵花一次。也就是说当他们一来到这里就必须选择一朵花爬上去,而从花上下来之后就必须离开这个地方,他们只能上一次和下一次。
请计算出他们能停留(停留的时间当然包括上、下花的时间和在花上爬行的时间)的最长时间最多是多少。
思路:
我们可以枚举每一朵花作为出发点.计算每次的时间,并取最大值.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2e6+1;
ll num[N];
ll s[N];
ll e[N];
ll n;
ll sum[N];
int main(){
scanf("%lld",&n);
for (ll i=1;i<=n;i++)scanf("%lld%lld%lld",&s[i],&e[i],&num[i]),num[i+n]=num[i],s[i+n]=s[i],e[i+n]=e[i];
ll ans=0;
for (ll i=1;i<=n;i++)
sum[i]=sum[i-1]+num[i],sum[i+n]=sum[i];
ll tmp=sum[n-1]+s[1]+e[n];
for (int i=2;i<=n;i++){
ll res=0;
res+=s[i]+e[i+n-1];
res+=sum[n]-num[i-1];
tmp=max(tmp,res);
}
printf("%lld\n",tmp);
}