人工智能工程师直通车-第二周课程—130人已学习
课程介绍
本课程共分为三个阶段。从机器学习到深度学习,再到项目实战,循序渐进,层层深入。除了系统讲解成为一名人工智能工程师所需的理论知识外,每节课还会配有实战案例,通过练习巩固所学知识,学以致用解决实际问题。第三个阶段包含四个大型工业级综合实战案例,采用大量真实数据集,完美模拟工作场景。学完后,大家绝对可以胜任人工智能领域相关工作。
课程收益
学完本课程后,人工智能小白可以达到具备一年项目经验的人工智能工程师水平。
讲师介绍
AI100 更多讲师课程
AI100致力于推进人工智能和数据科学领域的人才培养。目标是在 2025 年前为中国培养100万人工智能工程师,200万各行业数据科学讲师,帮助30万中国企业走向智能化。
课程大纲
1. Logistic回归 35:54
2. Softmax分类器 10:15
3. Scikit learn中的Logistic回归实现 11:56
4. 不平衡数据分类学习 24:15
5. 分类模型的评价 29:35
6. Logistic回归之模型选择/参数调优 5:21
7. Logistic回归-Otto商品分类代码 16:32
8. 支持向量机 (Support Vector Machines, SVM) 31:39
9. 带松弛因子的SVM:C-SVM 14:55
10. 核方法 14:15
11. 支持向量回归 (SVR) 5:31
12. sklearn中的SVM实现 15:17
13. SVM-Otto 7:29
大家可以点击【 查看详情】查看我的课程
课程介绍
本课程共分为三个阶段。从机器学习到深度学习,再到项目实战,循序渐进,层层深入。除了系统讲解成为一名人工智能工程师所需的理论知识外,每节课还会配有实战案例,通过练习巩固所学知识,学以致用解决实际问题。第三个阶段包含四个大型工业级综合实战案例,采用大量真实数据集,完美模拟工作场景。学完后,大家绝对可以胜任人工智能领域相关工作。
课程收益
学完本课程后,人工智能小白可以达到具备一年项目经验的人工智能工程师水平。
讲师介绍
AI100 更多讲师课程
AI100致力于推进人工智能和数据科学领域的人才培养。目标是在 2025 年前为中国培养100万人工智能工程师,200万各行业数据科学讲师,帮助30万中国企业走向智能化。
课程大纲
1. Logistic回归 35:54
2. Softmax分类器 10:15
3. Scikit learn中的Logistic回归实现 11:56
4. 不平衡数据分类学习 24:15
5. 分类模型的评价 29:35
6. Logistic回归之模型选择/参数调优 5:21
7. Logistic回归-Otto商品分类代码 16:32
8. 支持向量机 (Support Vector Machines, SVM) 31:39
9. 带松弛因子的SVM:C-SVM 14:55
10. 核方法 14:15
11. 支持向量回归 (SVR) 5:31
12. sklearn中的SVM实现 15:17
13. SVM-Otto 7:29
大家可以点击【 查看详情】查看我的课程