智能优化算法-反向正弦余弦算法:求解高维优化问题附matlab代码

727 篇文章 ¥59.90 ¥99.00
本文介绍了反向正弦余弦算法(ISCA),一种用于解决复杂非线性问题的智能优化算法,特别是在高维优化领域的应用。ISCA基于正弦余弦算法的改进,通过更新正弦函数的初始值来加速搜索,提高收敛速度和精度。文章提供了MATLAB代码示例,展示如何使用ISCA求解Rastrigin函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能优化算法-反向正弦余弦算法:求解高维优化问题附matlab代码

智能优化算法是一种基于自适应、学习和群体行为的方法,用于优化复杂的非线性问题。其中,反向正弦余弦算法(Inverted Sine Cosine Algorithm,ISCA)是一种新型的智能优化算法,用于解决高维优化问题。

ISCA算法是基于正弦余弦算法(Sine Cosine Algorithm,SCA)的改进版本。与SCA不同的是,ISCA算法通过计算当前最优个体的平均值来更新正弦函数的初始值,从而加速搜索过程,提高算法的收敛速度和精度。

以下是ISCA算法的matlab实现代码:

function [bestSol, bestFitness] = ISCA(fitnessFunc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值