基于遗传算法求解车辆路径规划问题 - 附Matlab代码

727 篇文章 ¥59.90 ¥99.00
本文介绍了使用遗传算法解决车辆路径规划问题的方法,详细讲解了算法思路,并提供了Matlab代码实现。遗传算法通过模拟生物进化过程进行优化,适用于物流配送等领域中的路径规划问题,以降低运输成本。文章提供的代码包括种群初始化、适应性函数、选择、交叉和变异等步骤,读者可按需调整以适应不同场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于遗传算法求解车辆路径规划问题 - 附Matlab代码

车辆路径规划问题(Vehicle Routing Problem,简称VRP)是指在给定的一组顾客、一定数量的配送中心和一定数量的货车的情况下,如何安排每一辆货车从一个中心出发,经过若干个顾客进行配送后返回到该中心的配送路线,使得总运输成本最小。该问题常见于物流配送领域,也是NP难问题之一。

本文将介绍使用遗传算法解决VRP问题的方法,并提供相应的Matlab代码。遗传算法是一种通过模拟生物进化过程对问题进行优化的算法,其主要思想是将问题转化为一个个个体的遗传编码,在不断迭代的过程中通过选择、交叉、变异等操作筛选出较优的个体,最终获得全局最优解。

以下为Matlab代码实现:

function [bestSolution,costTime] = VRPGA(nodeNum,nodeLoc,demand,vehicleNum,vehicleCapacity)
    tic;
    %初始化种群大小为200
    popSize=200;
    %生成初始种群
    pop=InitPop(popSize,nodeNum);
    %评估所有种群个体的适应性函数值
    fitness=EvalPop(pop,nodeLoc,demand,vehicleNum,vehicleCapacity);
    %迭代200次
    for iter=1:200
        %选择最优的个体进行进化
        ne
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值