基于Matlab的泊松图像融合算法
图像融合是指将多幅图像融合在一起,生成一幅高质量的合成图像。泊松图像融合是一种常见的图像融合方法,它使用泊松方程来实现区域之间的无缝连接。本文将介绍基于Matlab的泊松图像融合算法的实现。
一、算法原理
泊松图像融合算法基于两个假设:第一,源图像和目标图像有一个共同的区域进行融合;第二,融合区域中各像素位置之间存在相同或相似的颜色值。该算法的关键是在融合区域内找到一个映射函数,使其尽可能地满足这些假设。
泊松方程可以表示为:
div(grad(u))=f
其中,u代表图像中每个像素的灰度值,f代表每个像素的梯度值。我们可以通过计算源图像和目标图像之间的梯度差异来得到f值。然后,我们需要找到一个映射函数,使得该函数在融合区域内满足泊松方程。最后,我们将映射函数应用于源图像中的像素,并将结果与目标图像融合,生成最终的合成图像。
二、Matlab实现
-
加载源图像和目标图像
使用Matlab的imread函数加载两张图像。这里我们使用了两张分别为“source.png”和“target.png”的图像进行演示。通过imshow函数显示两张图像并比较它们,以确保它们具有合适的大小和位置。 -
创建掩膜(mask)
创建一个掩膜来指定图像的融合区域。掩膜应该是和源图像和目标图像相同大小的二值图像