C#: 使用 Simhash 算法实现文本相似性判断

48 篇文章 ¥29.90 ¥99.00
本文介绍了如何使用C#实现Simhash算法来计算文本的相似性。通过分词、特征提取、哈希压缩等步骤,利用哈希函数和阈值判断文本的汉明距离,从而评估文本之间的相似程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C#: 使用 Simhash 算法实现文本相似性判断

Simhash 是一种用于计算文本相似性的算法,它能够将文本数据转换成一个固定长度的哈希值,并通过比较哈希值的汉明距离来判断文本之间的相似程度。在本文中,我们将使用 C# 编程语言来实现 Simhash 算法,并演示如何使用该算法进行文本相似性判断。

Simhash 算法的实现步骤如下:

  1. 分词:将待计算相似性的文本进行分词,将文本拆分成一个个的词语。

  2. 特征提取:对于每个词语,计算它的哈希值(可以使用任意的哈希函数),并将每个词语的哈希值与一个权重相乘后相加,得到文本的 Simhash 值。

  3. 哈希压缩:对 Simhash 值进行位压缩,即将每个位的值大于等于阈值的设置为 1,小于阈值的设置为 0。这个阈值通常是根据具体场景来确定的。

下面是使用 C# 实现 Simhash 算法的示例代码:

using System;
using 
namespace ServiceRanking { /// <summary> /// Summary description for TF_IDFLib. /// </summary> public class TFIDFMeasure { private string[] _docs; private string[][] _ngramDoc; private int _numDocs=0; private int _numTerms=0; private ArrayList _terms; private int[][] _termFreq; private float[][] _termWeight; private int[] _maxTermFreq; private int[] _docFreq; public class TermVector { public static float ComputeCosineSimilarity(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFER LENGTH"); float denom=(VectorLength(vector1) * VectorLength(vector2)); if (denom == 0F) return 0F; else return (InnerProduct(vector1, vector2) / denom); } public static float InnerProduct(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFFER LENGTH ARE NOT ALLOWED"); float result=0F; for (int i=0; i < vector1.Length; i++) result += vector1[i] * vector2[i]; return result; } public static float VectorLength(float[] vector) { float sum=0.0F; for (int i=0; i < vector.Length; i++) sum=sum + (vector[i] * vector[i]); return (float)Math.Sqrt(sum); } } private IDictionary _wordsIndex=new Hashtable() ; public TFIDFMeasure(string[] documents) { _docs=documents; _numDocs=documents.Length ; MyInit(); } private void GeneratNgramText() { } private ArrayList GenerateTerms(string[] docs) { ArrayList uniques=new ArrayList() ; _ngramDoc=new string[_numDocs][] ; for (int i=0; i < docs.Length ; i++) { Tokeniser tokenizer=new Tokeniser() ; string[] words=tokenizer.Partition(docs[i]); for (int j=0; j < words.Length ; j++) if (!uniques.Contains(words[j]) ) uniques.Add(words[j]) ; } return uniques; } private static object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值