STL中使用了二分查找算法的3个常用函数。
头文件:include<algorithm>
1、函数lower_bound()
- 用法:int* lower_bound(int first, int last, int key);
- 参数:*first搜索范围的起始位置(一般是存储数据结构的首地址),*last是搜索范围的末位置且不包括该位置,key是搜索的关键字。
- 作用:返回一个非递减序列在区间[first,last)中第一个大于等于key的位置(下标值的指针)。
注意:如果所有元素都小于key,则返回last的位置,且last的位置是越界的!!。
2、函数upper_bound()
- 用法、参数、注意同1;
- 作用:返回一个非递减序列在区间(first, last)中第一个大于值 val 的位置(下标值的指针)。
3、函数binary_search()
- 用法:bool binary_search(int first, int last, int key);
- 参数同1
- 作用:返回的是是否成功搜索到关键字key。
4、例题:2018年第九届蓝桥杯【C++省赛B组】【第六题:递增三元组】
- 题目:给定三个整数数组
A = [A1, A2, … AN],
B = [B1, B2, … BN],
C = [C1, C2, … CN],
请你统计有多少个三元组(i, j, k) 满足:
1、1 <= i, j, k <= N
2.、Ai < Bj < Ck
【输入格式】
第一行包含一个整数N。
第二行包含N个整数A1, A2, ... AN。
第三行包含N个整数B1, B2, ... BN。
第四行包含N个整数C1, C2, ... CN。
对于30%的数据,1 <= N <= 100
对于60%的数据,1 <= N <= 1000
对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000
【输出格式】
一个整数表示答案
【样例输入】
3
1 1 1
2 2 2
3 3 3
【样例输出】
27
- 二分法求解,答案源码:
#include<bits/stdc++.h> //万能头文件,见扩展
using namespace std;
const int MAXN = 100005;
int a[MAXN],b[MAXN],c[MAXN];
int n,sum;
int main()
{
cin>>n;
for(int i=0;i<n;i++)scanf("%d",&a[i]);
for(int i=0;i<n;i++)scanf("%d",&b[i]);
for(int i=0;i<n;i++)scanf("%d",&c[i]);
sort(a,a+n);
sort(b,b+n);
sort(c,c+n);
sum = 0;
for(int i=0;i<n;i++){
int x = (lower_bound(a,a+n,b[i]) - a);
int y = (n - (upper_bound(c,c+n,b[i]) - c));
sum += x*y;
}
cout<<sum;
return 0;
}
5、扩展
- 万能头文件:#include<bits/stdc++.h>
- 包含的头文件:
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
using namespace std;
int main(){
return 0;
}
- 兼容性:大部分OJ已经兼容,蓝桥杯据说兼容,有待去检验[手动滑稽]