分治最重要的思想不还是二分查找
二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
--from 百度百科
Code
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
inline ll read(){
ll x=0,f=1; char ch=getchar();
while(!isdigit(ch)) (ch=='-')&(f=-1),ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar(); return x*f;
}
int n;
const int N=1<<20;
int a[N];
signed main(){
n=read();
for(register int i=1;i<=n;i++) a[i]=read();
int find=read();
sort(a+1,a+n+1);
int l=0,r=n;
while(l<r){
int mid=l+r>>1;
if(a[mid]<find) l=mid+1; else r=mid;
}
if(l>n) puts("No find");
else cout<<l<<endl;
return 0;
}
三分法
#include<stdio.h>
int n;
double a[13];
inline double f(const double x){
double ret=0;
for(int i=n;i;--i)ret=ret*x+a[i];
return ret;
}
int main(){
double left,right,mid;
scanf("%d%lf%lf",&n,&left,&right);
for(int i=n;i;--i){
scanf("%lf",a+i);
a[i]*=i;
}
while(right-left>1e-6)
if(f(mid=(right+left)/2)>0)left=mid;
else right=mid;
printf("%.5lf\n",left);
}