自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

uncle_ll的博客

keep healthy, keep going.

  • 博客(887)
  • 资源 (12)
  • 收藏
  • 关注

原创 个人分享及推荐

分享这里是我在平时阅读到的好书、好资料,我把他们都放在此处,也算是我自己的一个收藏夹。所有的这些都是我自己阅读完了,认为质量很不错,对成长有帮助的文章,希望他们也能给你带来成长

2020-01-11 20:15:07 421

原创 Dify-2:项目介绍

Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在弥合 AI 应用原型设计与生产部署之间的鸿沟。本文档为希望了解或扩展平台的开发者及技术用户提供 Dify 架构、组件与功能的技术概览。

2025-05-12 19:05:16 679 1

原创 Python dotenv 使用指南:轻松管理项目环境变量

很多开发者容易把自己开发的项目上传到Github上,但偶尔会忘记把数据库密码、支付接口密钥等敏感信息和谐掉,当代码提交上去时,这些信息就像裸奔一样暴露在所有人面前。更糟糕的是,不同环境(开发 / 测试 / 生产)的配置频繁切换,每次都要修改代码,效率低下且容易出错。

2025-04-26 22:53:38 802 1

原创 FastAPI 零基础入门指南:10 分钟搭建高性能 API

【代码】FastAPI 零基础入门指南:10 分钟搭建高性能 API。

2025-04-26 19:05:17 560

原创 解决Dify代码执行器网络报错:Failed to execute code

当配置文件缺失时,sandbox服务会默认禁用网络功能,导致代码执行器无法建立网络连接。配置文件来初始化网络参数,但在Docker部署流程中,该文件未自动生成到挂载目录。Dify的沙箱服务(sandbox)需要。

2025-04-24 18:33:08 664

原创 李宏毅NLP-6-seq2seq&HMM

XYPY∣XY∗Y∗argmaxY​PY∣XPY∣XPXPX∣YPY​PXYY∗argmaxY​PX∣YPYPX∣Y隐马尔可夫模型(HMM)在语音识别中对声学模型PX∣Y的建模思路,通过引入状态序列S:将PX∣Y(基于文本序列Y的声学概率)转换为PX∣S(基于状态序列S的声学概率),并说明一个文本序列Y对应一个状态序列S。

2025-04-21 07:38:01 744

原创 李宏毅NLP-5-RNNT&Neural Transducer&MoChA

说明:就是普通的 seq2seq 模型。通过编码器(Encoder)处理输入序列h1−h4h^1 - h^4h1−h4等隐藏状态),解码器利用注意力机制(attention)生成输出c0−c4c^0- c^4c0−c4等)。说明:解码器是线性分类器的 seq2seq 模型。通过引入空白符ϕ\phiϕ解决输入输出不对齐问题,每个时间步独立输出 token,后处理合并重复 token 并去除ϕ\phiϕ。说明:输入一个元素就要输出一个元素的 seq2seq 模型。

2025-04-19 13:10:23 783

原创 李宏毅NLP-4-CTC

CTC算法

2025-04-16 23:19:31 1069 3

原创 Dify-1:入门介绍

dify介绍

2025-04-16 19:23:10 839

原创 Google-Tensorflow-NLP

googleNLP

2025-04-15 07:52:12 1105

原创 企业级RAG行业应用落地方案——阿里云百炼

rag行业应用落地方案

2025-04-14 21:43:22 1187

原创 李宏毅NLP-3-LAS

LAS算法

2025-04-13 20:00:24 453

原创 李宏毅NLP-2-语音识别介绍

(语音识别很难吗?这是一张关于语音识别模型使用占比的饼状图。数据来源于对INTERSPEECH’19、ICASSP’19、ASRU’19三个会议超100篇论文的调研。“lexicon free” 表示相关系统或方法不依赖预先设定的词汇表来进行处理,比如某些语音识别技术尝试直接对语音信号进行分析转换,不借助传统词汇表的辅助,以适应更灵活、未知的语言场景。

2025-04-12 12:30:18 1125

原创 互联网金融贷后催收合规技术指南

禁止骚扰无关人员、限制催收时间(22:00-8:00)、杜绝暴力威胁。:仅针对债务人及合同约定担保人。

2025-04-11 09:27:38 1025

原创 GPT模型角色解析:System、User、Assistant

在GPT模型中,`system`、`user`和`assistant`是三种不同的角色,分别用于引导对话流程和区分对话中的不同参与者。

2025-04-10 20:47:09 489

原创 达摩院Paraformer-ONNX模型:一站式高精度中文语音识别工业级解决方案

阿里达摩院推出的`speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-onnx`模型,通过ONNX运行时优化,集语音端点检测、实时转写、标点恢复等核心功能于一体,为工业场景提供开箱即用的高并发语音识别服务。

2025-04-09 09:24:00 1164

原创 自然语言处理利器NLTK:从入门到核心功能解析

自然语言工具包(Natural Language Toolkit,NLTK)自2001年诞生于宾夕法尼亚大学以来,已成为自然语言处理(NLP)领域最具影响力的Python库之一。作为全球数十所顶尖高校的教学工具和研究基础,NLTK凭借其模块化设计和丰富的功能集合,持续为语言学研究者、数据科学家和AI开发者提供强大支持。作为NLP领域的"瑞士军刀",NLTK通过清晰的模块划分和教学友好的设计,持续赋能新一代NLP开发者。提供t-test、卡方检验、PMI等统计方法检测词汇共现。

2025-04-07 23:30:00 1179

原创 从 Credit Metrics 到 CPV:现代信用风险模型的进化与挑战

现代信用风险模型借助量化分析与科学建模手段,极大地提升了风险管理的精细化水平。不同模型各具优劣,金融机构在选择时应综合考虑自身业务特点、数据基础以及风险偏好等因素,灵活选择合适的模型,或结合多种模型构建全面的风险评估体系,以此来有效应对复杂多变的市场环境,实现稳健经营与可持续发展。

2025-04-02 09:53:55 1297

原创 身份证翻拍与图片检测技术全解析:原理、方法与应用

总之,身份证翻拍类型多样,翻拍图片手段丰富且存在共性问题,与正常拍摄图片质量有别。翻拍图片检测技术多管齐下,深度学习在其中应用广泛且有实际案例和开源项目支持。随着技术发展,这些技术将不断优化,在保障信息安全、维护版权等方面发挥更重要作用。希望本文能帮助读者深入理解这一领域知识,如有疑问或建议,欢迎交流。在当今数字化时代,身份证翻拍及图片检测技术在众多领域发挥着关键作用。本文将深入探讨身份证翻拍的类型、翻拍图片的手段、其与正常拍摄图片的质量差异、翻拍图片检测技术以及相关开源项目,为您呈现这一领域的全面知识。

2025-04-02 09:29:44 1165

原创 目标检测中的非极大值抑制(NMS)原理与实现解析

是一种关键的后处理技术,用于去除冗余的检测结果,保留置信度最高且位置最优的边界框。本文将通过一段Python代码解析NMS的核心实现逻辑,并演示其在OpenCV环境中的实际效果。在目标检测任务中,模型通常会对同一目标生成多个重叠的候选框(如锚框或预测框)。,键为类别名称,值为该类别对应的边界框列表。,表示左上角和右下角坐标及置信度。

2025-03-20 09:02:38 606

原创 解决MySQL字符集冲突引发的“Illegal mix of collations”错误

解决字符集冲突

2025-03-18 20:30:00 988

原创 李宏毅NLP-1-课程介绍

NLP任务概览

2025-03-17 23:25:37 400

原创 深度学习与传统算法在人脸识别领域的演进:从Eigenfaces到ArcFace

其核心思想是将人脸图像视为高维向量,通过协方差矩阵计算特征向量(即特征脸),将原始数据投影到由前k个最大特征值对应的特征向量张成的低维子空间。在FERET数据集上,Eigenfaces曾达到85%的识别准确率,证明了线性降维的有效性。2014年提出的DeepFace采用3D对齐技术将输入图像校正至正面视角,通过含8层卷积的神经网络提取4096维特征。局部二值模式(LBP)通过计算3×3邻域内中心像素与周围像素的灰度比较生成8位二进制码,形成256维直方图特征。

2025-03-17 19:31:25 1315

原创 一文读懂 KYC:金融、IT 领域的关键应用与实践

KYC,中文意为 “充分了解你的客户” ,是金融机构以及特定行业在与客户建立业务关系或开展特定交易时,必须遵循的基本原则与流程。这要求机构全面、深入地审查客户的身份、背景、财务状况、资金来源、交易目的和性质等信息,从而对客户有一个全方位的认知。比如银行在为客户开设账户时,会仔细核实客户的身份证件、工作单位、收入情况等,这就是 KYC 的具体体现。

2025-02-19 09:11:48 2073 1

原创 基于 llama-index与Qwen大模型实现RAG

LlamaIndex和Langchain都是比较成熟的RAG和Agent框架,这里基于llama实现RAG框架,大模型选用阿里的开源模型Qwen大模型。可以实现Qwen2.5 与外部数据(例如文档、网页等)的连接,利用 LlamaIndex 与 Qwen2.5 快速部署检索增强生成(RAG)技术。RAG(Retrieval-Augmented Generation)即检索增强生成,是一种结合了信息检索和语言生成技术的方法,旨在提高语言模型在生成文本时的准确性、相关性和实用性。模型来检索英文文档,下载。

2025-02-13 19:10:31 1811

原创 复制conda虚拟环境的几种方法

建议优先使用方法一进行本地克隆,若遇到问题再采用方法三打包。对于需要长期维护的环境,使用方法二结合版本控制系统(Git)管理YAML文件是更规范的方案。

2025-02-13 19:00:00 3801

原创 ChatGPT大模型极简应用开发-CH5-使用 LangChain 框架和插件增强 LLM 的功能

当你开始与 GPT-4 进行交互时,OpenAI 会向 GPT-4 发送一条隐藏消息,以检查你的插件是否已安装。这条消息会简要介绍你的插件,包括其描述信息、端点和示例。模型就成了智能的 API 调用者。当用户询问关于插件的问题时,模型可以调用你的插件 API。是否调用插件是基于 OpenAPI 规范和关于应该使用 API 的情况的自然语言描述所做出的决策。一旦模型决定调用你的插件,它就会将 API 的结果合并到上下文中,以向用户提供响应。因此,插件的 API 响应必须返回原始数据而不是自然语言响应。

2025-01-23 21:16:38 1377

原创 ChatGPT大模型极简应用开发-CH4-GPT-4 和 ChatGPT 的高级技巧

在为 LLM 编写输入文本时,

2025-01-23 14:18:17 860

原创 ChatGPT大模型极简应用开发-CH3-使用 GPT-4 和 ChatGPT 构建应用程序

开发基于 LLM 的应用程序,核心是将 LLM 与 OpenAI API 集成。LLM 已被证明在总结文本方面表现出色。在大多数情况下,LLM 能够提取文本的核心思想并重新表达,使生成的摘要流畅且清晰。媒体监测:快速了解重要信息,避免信息过载。趋势观察:生成技术新闻的摘要或对学术论文进行分组并生成有用的摘要。客户支持:生成文档概述,避免客户被大量的信息所淹没。电子邮件浏览:突出显示最重要的信息,并防止电子邮件过载。从视频中提取文字记录根据文字记录生成摘要。

2025-01-22 10:15:02 621

原创 ChatGPT大模型极简应用开发-CH2-深入了解 GPT-4 和 ChatGPT 的 API

如图 2-4 所示,在这种模式下,你提供一些文本(在图中标记为 I)和指令(在图中标记为 J),模型将尝试修改文本。如果你是国际用户,请注意,你的个人信息和输入的数据可能会从你的所在地传输到 OpenAI 在美国的服务器上。每个模型都有自己的功能和定价,且这些模型是专有的,你不能根据自己的需求直接修改模型的代码。可以使用函数定义将自然语言转换为 API 调用或数据库查询,从文本中提取结构化数据,并通过调用外部工具来创建聊天机器人,而无须创建复杂的提示词以确保模型以特定的格式回答可以由代码解析的问题。

2025-01-22 09:31:54 517

原创 ChatGPT大模型极简应用开发-CH1-初识 GPT-4 和 ChatGPT

GPT-4 和其他 GPT 模型是基于大量数据训练而成的大语言模型 (large language model,LLM),它们能够以非常高的准确性识别和生成人类可读的文本。GPT-4 和 ChatGPT 基于一种特定的神经网络架构,即 Transformer。Transformer 就像阅读机一样,它关注句子或段落的不同部分,以理解其上下文并产生连贯的回答。此外,它还可以理解句子中的单词顺序和上下 文意思。这使 Transformer 在语言翻译、问题回答和文本生成等任务中非常有效。

2025-01-17 18:55:52 666 1

原创 ChatGPT大模型极简应用开发-目录

ChatGPT 背后的 LLM 技术使普通人能够通过自然语言完成过去只能由程序员通过编程语言实现的任务,这是一场巨大的变革。然而,人类通常容易高估技术的短期影响而低估长期影响。大量的开发人员正在学习 GenAI 技术,并将 新技术用于增强原有产品或者构建全新的 AI Native 应用程序。在日常工作中应用新的 AI 技术,这一方面很大程度上提高了我的生产力

2025-01-17 18:51:55 642

原创 深度学习超参数调优秘籍:解锁模型的最佳性能

超参数调整是深度学习中一项极具挑战性但又至关重要的任务。通过合理调整学习率、动量、预热周期、L2 正则化系数和批大小等超参数,并结合有效的实验策略和全面的监控评估方法,我们能够系统地优化模型的性能,提高模型的泛化能力。在实际应用中,需要不断地尝试和实践,根据具体的问题和数据特点,灵活选择合适的超参数调整方法和策略。

2025-01-13 23:30:00 1807

原创 梯度检查:保障模型训练准确性的关键环节

在机器学习模型的训练过程中,梯度检查是不可或缺的重要环节。它基于数值微分原理,通过双边逼近方法获取梯度的近似值,并与反向传播计算出的梯度进行精确比对,以此来验证梯度计算的准确性。从理论层面的导数概念、泰勒公式推导,到实践中的实例计算、算法实现步骤,以及在不同网络环境和正则化条件下的应用注意事项,都全面展示了梯度检查的复杂性与严谨性。正确运用梯度检查能够帮助我们及时发现模型训练中的梯度异常问题,避免因梯度计算错误而导致模型训练效果不佳甚至失败。它不是训练过程中的计算工具,而是调试和保障训练准确性的得力助手。

2025-01-13 19:22:01 914

原创 神经网络权重矩阵初始化:策略与影响

因此,在多层网络中,零初始化是绝对不可取的。然而,这一过程充满了不确定性,就像在未知的道路中选择下山路径,每次重新初始化就如同重新选择道路,即使使用相同的初始化算法,也会给训练结果带来显著差异。通过对神经网络权重矩阵初始化方法的深入研究和理解,能够在构建和训练神经网络时,根据具体的网络结构和激活函数,选择最为合适的初始化方法,从而为神经网络的成功训练和高效性能奠定坚实基础。随着神经网络研究的不断深入,人们针对不同的网络结构和激活函数,探索出了多种权重矩阵初始化方法,以应对训练过程中出现的各种问题。

2024-12-12 20:11:24 1533 4

原创 模型文件全解析:从基础概念到实际应用

在解决方案资源管理器中,右键点击项目,选择“添加”->“现有项”,在弹出的对话框中,将文件类型过滤器改为所有文件,导航到模型所在目录(如 mnist.onnx 文件所在目录),选择模型文件并添加。在将模型集成到应用程序之前,开发者需要使用模型查看工具(如 Netron 等)仔细查看模型的接口、输入输出格式和对应的范围,并对程序中传入模型的输入进行相应的预处理工作,否则可能无法获得预期的效果。以图像分析为例,当输入一张图像时,模型文件能够利用其内部保存的信息,经过复杂的计算,输出图像的类别信息或相关特征。

2024-12-12 19:30:00 1199

原创 信贷场景中的用户画像调研:构建精准决策的基石

客户在信贷产品生命周期内的状态和行为变化,宛如一条动态的时间轴,记录着他们从新客户的初次接触,到成长为现有客户的持续合作,再到可能面临的逾期风险等各个阶段的轨迹。而合适的利率水平则是在平衡金融机构收益与客户还款压力之间的微妙艺术,既能保证金融机构的盈利空间,又能提高客户的还款意愿和能力,从而实现信贷资金的安全回收和业务的可持续发展。例如,如果客户在查询贷款信息时频繁关注特定类型的贷款产品,金融机构便可针对性地向其推荐相关产品,并优化申请流程,提高客户的申请体验,进而增强客户对金融机构的信任和好感。

2024-12-10 19:45:00 1206

原创 GPU服务器配置

gpu服务器配置

2024-12-04 18:58:22 508

原创 分类算法中的样本不平衡问题及其解决方案

在机器学习的分类任务中,样本不平衡是指不同类别训练样本数量存在显著差异的现象。这一差异会给模型训练和性能评估带来挑战,尤其在处理少数类样本时,模型可能难以有效学习其特征。

2024-12-04 18:52:26 2876

原创 金融科技白皮书:2022-2023年度回顾与前瞻

金融科技白皮书2022-2023

2024-11-22 18:54:46 863

互联网金融贷后催收合规技术指南

互联网金融贷后催收合规技术指南

2025-04-11

s3-python.pdf

亚马逊 aws s3 python接口文档 可供参考

2020-09-01

中国医学影像AI白皮书.pdf

白皮书 | 医学影像

2020-08-31

2019年武汉市文化与金融白皮书报告.pdf

武汉市 文化与金融白皮书 2019 。

2019-11-10

deppfake.pdf

deepface ppt介绍如何使用 的

2019-10-29

今日头条20代年轻人群指数研究报告-2019.8-58页.pdf

今日头条 人群消费调查 ,涵盖各个行业 。

2019-10-18

HammerDB mysql及oracle数据库性能测试工具

适合Linux 64位系统 ,mysql及oracle性能的小工具。 的

2017-08-07

智能时代 吴军 .mobi 电子书

大数据和机器智能的出现,对我们的技术发展、商业和社会都会产生重大的影响。作者吴军在《智能时代:大数据与智能革命重新定义未来》中指出,首先,我们在过去认为非常难以解决的问题,会因为大数据和机器智能的使用而迎刃而解,比如解决癌症个性化治疗的难题。同时,大数据和机器智能还会彻底改变未来的商业模式,很多传统的行业都将采用智能技术实现升级换代,同时改变原有的商业模式。大数据和机器智能对于未来社会的影响是全方位的。

2016-10-16

Stefano Mattoccia 的讲义 Stereo Vision: algorithms and applications

Stefano Mattoccia 的讲义 Stereo Vision: algorithms and applications,自己花了很大力气下下来的,对立体视觉的讲解和各种方法的比较

2016-09-14

鸟叔私房菜

ARM的一些资料,浅俗易懂, 可以自行下载浏览 自学。

2014-05-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除