- 博客(17)
- 收藏
- 关注
原创 目标检测单阶段、双阶段检测框部分学习总结
目录一、单阶段目标检测(以yolov5为例)1、anchor的引入及产生2、anchor与gt的匹配机制3、后处理NMS机制二、双阶段目标检测(以faster rcnn为例)1、RPN(Region Proposal Networks)的引入2、RoI Pooling(1)不同尺度的anchor的作用?——yolov5中有三种不同尺度anchor共9个,在三个Detect层(3个不同尺寸地feature map)使用,每个feature map的每个grid cell都有三个anchor进行预测,对于不同特
2022-06-12 20:01:42 4269 1
原创 albumentations报错 KeyError‘You have to pass data to augmentations as named arguments,...... ‘
最近初入语义分割的坑,用albumentations库进行数据增强的时候报错如下:网上也没搜到合适的解决办法,记录一下谨防以后再遇到这个问题。根据报错提示:“You have to pass data to augmentations as named arguments, for example: aug(image=image)”,意思就是需要需要传数据参数给augmentations中的image形参,于是修改为如下就可以了:image = trfm(image=images)im
2022-03-11 11:28:30 2382
原创 python安装torchvision报错“ImportError: /opt/.../torchvision/_C.cpython-36m-x86_64-linux-gnu.so”
主要原因是torchvision的版本与pytorch版本不兼容,选择和pytorch版本兼容的torchvision版本即可。一、查看pytorch的版本:在python IDE中输入,import torchprint(torch.__version__)可以看到我的pytorch版本为1.7.1:二、选择相匹配的torchvision版本:可以到pytorch官网上根据自己安装的pytorch确认应该安装的torchvision版本,比如pytorch1.7.1就应该对应
2022-03-09 11:41:59 3233
原创 语义分割学习总结(二)—— Unet网络
目录一、网络结构(一)左半部分(特征提取部分)(二)右半部分(特征融合部分)(三)代码实现(二)重叠平铺策略(三)加权损失(四)随机弹性形变一、网络结构(图源来自网络)这个结构的思想其实就是先对图像进行卷积+池化,进行特征提取,也就是U型的左半部分,然后对图像拼接+上采样,进行特征融合。(一)左半部分(特征提取部分)两个3x3的卷积层(ReLU)+ 一个2x2的maxpooling层构成一个下采样的模块,由下采样模块反复组成。每经过一次下采样,通.
2022-02-27 20:20:21 5240
原创 Linux 移动文件名含有特定字段的文件
前几天数据集放反了导致损失函数的两个参数维度不匹配而报错,第一反应是写python来解决这个问题。后来用了Linux的指令也解决了这个问题,以后应该会经常用到,记录一下:1、找到某些特定命名的文件并移动(参数:①所在文件夹名/mnt/portrait-matting-unet-flask/data/temp②移动的目标文件夹./outdirfind /mnt/portrait-matting-unet-flask/data/temp -name "*_matte*" | xargs -I file
2022-02-27 11:47:50 2930
原创 python安装包报错“No such file or directory: ‘·····\\numpy-1.21.2.dist-info\\METADATA‘的解决办法
根据报错的路径找到文件,将该安装包的文件都删掉:然后再使用镜像安装:pip install -i https://pypi.douban.com/simple/ numpy成功:
2022-02-11 18:44:46 5637 1
原创 模型部署学习笔记(一)
关于部署:推断(Inference)的实际部署有多种可能,可能部署在Data Center(云端数据中心),比如说大家常见的手机上的语音输入,目前都还是云端的,也就是说你的声音是传到云端的,云端处理好之后把数据再返回来;还可能部署在嵌入端,比如说嵌入式的摄像头、无人机、机器人或车载的自动驾驶,当然车载的自动驾驶可能是嵌入式的设备,也可能是一台完整的主机,像这种嵌入式或自动驾驶,它的特点是对实时性要求很高。https://blog.csdn.net/intflojx/article/details/8177.
2022-02-06 19:12:36 420
原创 机器学习+模式识别学习总结(六)——特征选择与特征提取
一、特征提取与选择任务定义:得到实际对象的若干具体特征之后,再由这些原始特征产生对分类识别最有效、数目最少的特征。使在最小维数特征空间中异类模式点相距较远,同类模式点相距较近。二、特征提取与选择任务的提出背景:①获得的特征测量值不多,导致提供的信息较少②获得的测量值太多,导致维度灾难(特征数目达限后,性能反而不好)③特征存在很多无用信息,或者有的有用信息不能反映本质,要通过变换才能得到更有意义的量。二、特征选择与提取的两个基本途径(一)直接选择法(特征选择):直接从已获得的n个原始特征中选出d个
2022-01-27 17:09:43 3422
原创 机器学习+模式识别学习总结(五)——集成学习
一、定义1、集成学习:集成学习的核心思想就是构建并结合多个学习器提升性能。将多个分类方法聚集在一起,以提高分类准确性,可以是不同或相同的算法(异质集成/同质集成),最后通过某种方法把学习结果集成起来。是一种机器学习范式,使用多个学习器来解决同一个问题。2、集成学习两大类:(1)个体学习器之间存在强依赖关系,必须串行生成的序列化方法,如,Boosting;(2)个体学习器之间不存在强依赖关系,可同时生成并行化方法,如,Bagging和随机森林。二、Boosting1、简述:Bo
2022-01-26 16:15:52 1933
原创 机器学习+模式识别学习总结(四)——决策树
一、定义及介绍1、分类决策树模型是一种描述对实例进行分类的树形结构,由结点+有向边组成。结点分为内部结点(表示一个特征/属性)和叶结点(表示一个类)。【树的总结构包括:根结点、非叶子结点、叶子结点、分支】2、if-then规则:从根结点到叶结点的每一条路径构建一条规则,路径上内部结点的特征对应规则的条件,叶结点的类对应着规则的结论。if-then规则集合的重要性质:互斥且完备。这个规则的意识也就是从根结点出发,最终都有且只有一条路径到达某一个具体的叶结点,并且不会出现实例无法分类的情况。3、决策
2022-01-22 16:34:23 1377
原创 机器学习+模式识别学习总结(三)——逻辑回归
出于逻辑回归提出背景的好奇,特地去了解了一下:逻辑回归里的“Logistic”函数是数学家维尔赫斯特在研究人口数量增长问题的过程中提出来的,人口预测问题所使用的logistic模型可以用来描述包括人类在内几乎所有物种在资源约束下的增长规律,当然很多社会、经济现象都可以借助于来解释。而至于为什么取名为“Logistic”,维尔赫斯特没有说明缘由,据后人猜测是效仿Arithmetic(算术), Geometric(几何)这两个单词,同时也是为了和Logarithmic(对数的)做对比,当然后来还是经过了一系列.
2022-01-19 21:30:15 856
原创 机器学习+模式识别学习总结(二)——感知机和神经网络
一、感知机1、概念:感知机是二分类的线性分类器,目的是求出能将训练数据进行线性划分的分离超平面,得到感知机模型,然后使用该模型对新的输入实例进行分类。感知机是神经网络和支持向量机的基础。2、损失函数:误分类点到超平面的总距离。,其中是误分类点的集合。这也是感知机学习的经验风险函数。3、优化目标:使得损失函数最小,即使误分类点到超平面的距离之和最小。采取随机梯度下降法作为最优化的方法,也是求解参数的方法。(1)基于感知机原始形式的优化及参数求解:假设误分类点集合固定,那么对分别求,
2022-01-15 18:28:41 2352
原创 机器学习+模式识别学习总结(一)——k近邻法
学习了机器学习和模式识别之后发现两门课有一些相通的以及互补的地方,想总结一下。一、k-近邻法:(一)算法原理:在给定训练数据集中找到与待预测实例最近的k个训练实例,结合这k个训练实例的类别,采用多数投票法决定待预测实例的类别。(二)基本要素:k值选择、距离度量、决策规则1、k值选择:①选择奇数为佳。防止出现相同“票数”的情况,影响决策。②k值的大小可以类比于图像处理中的邻域大小。若k比较大,则选择的是较大的邻域,考虑全局信息,这样的话距离实例较远的训练实例也会对预测结果起作用,但实际上距离较
2022-01-14 20:55:14 1533
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人