数据治理
文章平均质量分 91
牧心.
心之所向,素履以往
展开
-
【数据仓库/数据治理】探索数据处理的两大类:OLTP与OLAP及其核心技术
在现代数据处理的世界中,数据的管理和分析是商业和技术决策的关键。和。这两者分别适用于日常事务处理和复杂的分析操作,在数据管理中扮演着不同但互补的角色。原创 2024-08-27 16:26:26 · 1251 阅读 · 0 评论 -
【大数据】数据仓库的定义、数据模型及其建设与设计
数据仓库是支持管理决策的集成化、主题化的数据集合,它通过ETL过程从事务型数据库中抽取、清洗和转换数据。其体系结构包括数据源、存储与管理、OLAP服务器和前端工具。数据模型分为概念、逻辑和物理模型,涉及高层、中间层和底层建模。设计过程包括概念模型、逻辑模型和物理模型设计,重点在于确定主题域、粒度、数据分割策略和关系模式定义,以及软硬件配置和数据抽取、转换、加载策略。原创 2024-08-23 17:05:52 · 1097 阅读 · 0 评论 -
【数据治理】数据指标体系构建与优化
在数据驱动的商业时代,构建和优化数据指标体系对于企业洞察市场动态、提升用户体验、优化产品服务和实现商业目标至关重要。本文深入探讨了数据指标体系的定义、构成要素、以及在电商、社区平台和金融理财类APP等不同行业中的应用实践。文章强调了明确业务目标的重要性,并详细介绍了如何确定北极星指标、拆分子指标与过程指标、以及添加分类维度来构建指标体系。此外,还讨论了数据指标体系的质量评估标准,包括数据质量、应用质量和业务质量,并提出了动态更新指标体系的必要性和优化策略。最后,文章强调了维护和优化指标体系是一个持续的过程。原创 2024-05-08 14:50:47 · 1843 阅读 · 0 评论 -
【数据治理】指标体系
体系化建模是数据治理的核心,包括数据仓库规划、指标维度映射、数据定义和元数据管理。高层模型设计要求数据工程师根据业务需求确定业务过程,并将指标拆分为原子和计算指标,构建一致性维度的总线矩阵。衍生指标由原子或计算指标结合时间周期和限定条件构成,是报表和数据产品的基础。派生指标体系明确了数据域、业务过程、维度等概念,强调了指标命名的规范性,以确保数据治理的高效和准确性。原创 2024-05-08 11:20:38 · 1339 阅读 · 0 评论