剑指 Offer 68 - II. 二叉树的最近公共祖先-Python题解

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

在这里插入图片描述

示例 1:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:

输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/er-cha-shu-de-zui-jin-gong-gong-zu-xian-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解
递归解析:
终止条件:
当越过叶节点,则直接返回 nullnull ;
当 rootroot 等于 p, qp,q ,则直接返回 rootroot ;
递推工作:
开启递归左子节点,返回值记为 leftleft ;
开启递归右子节点,返回值记为 rightright ;
返回值: 根据 leftleft 和 rightright ,可展开为四种情况;
当 leftleft 和 rightright 同时为空 :说明 rootroot 的左 / 右子树中都不包含 p,qp,q ,返回 nullnull ;
当 leftleft 和 rightright 同时不为空 :说明 p, qp,q 分列在 rootroot 的 异侧 (分别在 左 / 右子树),因此 rootroot 为最近公共祖先,返回 rootroot ;
当 leftleft 为空 ,rightright 不为空 :p,qp,q 都不在 rootroot 的左子树中,直接返回 rightright 。具体可分为两种情况:
p,qp,q 其中一个在 rootroot 的 右子树 中,此时 rightright 指向 pp(假设为 pp );
p,qp,q 两节点都在 rootroot 的 右子树 中,此时的 rightright 指向 最近公共祖先节点 ;
当 leftleft 不为空 , rightright 为空 :与情况 3. 同理;

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
        if not root or root == p or root == q: return root
        left = self.lowestCommonAncestor(root.left,p,q)
        right = self.lowestCommonAncestor(root.right,p,q)
        if not left and not right : return #1
        if not left : return right # 3
        if not right: return left # 4
        return root # if left and right:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值