给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/er-cha-shu-de-zui-jin-gong-gong-zu-xian-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
递归解析:
终止条件:
当越过叶节点,则直接返回 nullnull ;
当 rootroot 等于 p, qp,q ,则直接返回 rootroot ;
递推工作:
开启递归左子节点,返回值记为 leftleft ;
开启递归右子节点,返回值记为 rightright ;
返回值: 根据 leftleft 和 rightright ,可展开为四种情况;
当 leftleft 和 rightright 同时为空 :说明 rootroot 的左 / 右子树中都不包含 p,qp,q ,返回 nullnull ;
当 leftleft 和 rightright 同时不为空 :说明 p, qp,q 分列在 rootroot 的 异侧 (分别在 左 / 右子树),因此 rootroot 为最近公共祖先,返回 rootroot ;
当 leftleft 为空 ,rightright 不为空 :p,qp,q 都不在 rootroot 的左子树中,直接返回 rightright 。具体可分为两种情况:
p,qp,q 其中一个在 rootroot 的 右子树 中,此时 rightright 指向 pp(假设为 pp );
p,qp,q 两节点都在 rootroot 的 右子树 中,此时的 rightright 指向 最近公共祖先节点 ;
当 leftleft 不为空 , rightright 为空 :与情况 3. 同理;
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
if not root or root == p or root == q: return root
left = self.lowestCommonAncestor(root.left,p,q)
right = self.lowestCommonAncestor(root.right,p,q)
if not left and not right : return #1
if not left : return right # 3
if not right: return left # 4
return root # if left and right: