22/6/28

本文介绍了两个图论算法的应用实例。第一个是新年好问题,通过预处理单源最短路径并使用深度优先搜索找到最优访问顺序。第二个是通信线路问题,采用二分查找确定满足特定条件的路径权值。这两个问题展示了如何利用图的结构来解决实际路径优化问题。
摘要由CSDN通过智能技术生成

1,acwing1135.新年好 ;2,acwing 340. 通信线路;


1,新年好;

思路:先预处理以1,a,b,c,d,e为起点到所有点的单源最短路;

dfs所有拜访顺序,共(5!)种拜访顺序,找出最短的一种;

注意memset(dist,0x3f N*4)和memset(dist ,0x3f sizeof N*4)是有区别的,所以宏定义最好能区分这俩;

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define rep1(i,a,n) for( int i=a;i<n;++i) 
#define rep2(i,a,n) for( int i=a;i<=n;++i) 
#define per1(i,n,a) for( int i=n;i>a;i--) 
#define per2(i,n,a) for( int i=n;i>=a;i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define mset(a,i,b) memset((a),(i),sizeof (b))
#define mcpy(a,i,b) memcpy((a),(i),sizeof (b))
#define pro_q priority_queue
#define pb push_back
#define pf push_front
#define endl "\n"
#define lowbit(m) ((-m)&(m))
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define yi first
#define er second
#define INF 0x3f3f3f3f
using namespace std;
typedef pair<int,int> PII;
typedef pair<long long,long long>PLL;
typedef pair<int,PII> PIII;
typedef long long LL;
typedef double dob;
const int N=2e5+10;
int e[N],ne[N],w[N],h[N],idx;
void add(int a,int b,int c)
{
    w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int q[N],dist[6][N],source[6],st[N];
int n,m;
void dijkstra(int start,int dist[])
{
    memset(dist,0x3f,N*4); 
    dist[start]=0;
    mset(st,0,st);
    pro_q<PII,vector<PII>,greater<PII>>heap;
    heap.push({0,start});
    while(heap.size())
    {
        auto t=heap.top();
        heap.pop();
        int ver=t.second;
        if(st[ver])continue;
        st[ver]=1;
        for(int i=h[ver];~i;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[ver]+w[i])
            {
                dist[j]=dist[ver]+w[i];
                heap.push({dist[j],j});
            }
        }
    }
}
int dfs(int u,int start,int distance)
{
    if(u>5)return distance;
    int res=INF;
    rep2(i,1,5)
    {
        if(!st[i])
        {
            int next=source[i];
            st[i]=1;
            res=min(res,dfs(u+1,i,distance+dist[start][next]));
            st[i]=0;
        }
    }
    return res;
}
signed main()
{
    quick_cin();
    cin>>n>>m;
    source[0]=1;
    mset(h,-1,h);
    rep2(i,1,5)cin>>source[i];
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c),add(b,a,c);
    }
    rep1(i,0,6)dijkstra(source[i],dist[i]);
    mset(st,0,st);
    cout<<dfs(1,0,0);
    return 0;
}

 2,通信线路;

题意:找出1~n号的路径中,第k+1大的路径权值最小;所以不一定就是在最短路里找了;

一种解法是二分,为什么可以二分呢,

二分找的是一个分界点,使得右边满足一个性质,左边满足一个性质;

边权定义:长度大于x的权值为1,小于x的为0,所以走到n的路径值就代表经过几条大于x的路径;

 

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define rep1(i,a,n) for( int i=a;i<n;++i) 
#define rep2(i,a,n) for( int i=a;i<=n;++i) 
#define per1(i,n,a) for( int i=n;i>a;i--) 
#define per2(i,n,a) for( int i=n;i>=a;i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define mset(a,i,b) memset((a),(i),sizeof (b))
#define mcpy(a,i,b) memcpy((a),(i),sizeof (b))
#define pro_q priority_queue
#define pb push_back
#define pf push_front
#define endl "\n"
#define lowbit(m) ((-m)&(m))
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define yi first
#define er second
#define INF 0x3f3f3f3f
using namespace std;
typedef pair<int,int> PII;
typedef pair<long long,long long>PLL;
typedef pair<int,PII> PIII;
typedef long long LL;
typedef double dob;
const int N=1e5+10;
int n,m,k;
int e[N],ne[N],w[N],h[N],idx;
int dist[N];
deque<int>q;
int st[N];
void add(int a,int b,int c)
{
    w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool check(int bound)
{
    mset(dist,0x3f,dist);
    mset(st,0,st);
    q.push_back(1);
    dist[1]=0;
    while(q.size())
    {
        int t=q.front();
        q.pop_front();
        if(st[t])continue;
        st[t]=1;
        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i],v=w[i]>bound;
            if(dist[j]>dist[t]+v)
            {
                dist[j]=dist[t]+v;
                if(!v)q.push_front(j);
                else q.push_back(j);
            }
        }
    }
    return dist[n]<=k;
}
signed main()
{
    quick_cin();
    cin>>n>>m>>k;
    mset(h,-1,h);
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c),add(b,a,c);

    }
    int l=0,r=1e6+1;
    while(l<r)
    {
        int mid=l+r>>1;
        if(check(mid))r=mid;
        else l=mid+1;
    }
    if(r==1e6+1)cout<<-1<<endl;
    else cout<<r<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dull丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值