1,cf Productive Meeting;2,acwing 1134.最短路计数(模板题);3,acwing 1142.繁忙的都市(最小生成树);4,acwing 1143.联络员(kruskal);
1,cf Productive Meeting
题意:
思路:看样例,
很容易想到一个做法是每次选最大值和次大值,答案增加一个次大值,然后接着选;所以维护最大值和次大值,由此想到大顶堆;这样一直取;
但很不幸,wa了;错误的原因就在最大值和次大值的更替上,每次取出来最大值和次大值,不能直接增加一个次大值,只增加一次,即将最大值和次大值减一后再放到堆里,这样就能实时保证最大值和次大值的更新;
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define rep1(i,a,n) for(register int i=(a);i<(n);++i)
#define rep2(i,a,n) for(register int i=(a);i<=(n);++i)
#define per1(i,n,a) for(register int i=(n);i>(a);i--)
#define per2(i,n,a) for(register int i=(n);i>=(a);i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define memset(a,i,b) memset((a),(i),sizeof (b))
#define memcpy(a,i,b) memcpy((a),(i),sizeof (b))
#define pro_q priority_queue
#define pb push_back
#define pf push_front
#define endl "\n"
#define lowbit(m) ((-m)&(m))
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define yi first
#define er second
#define INF 0x3f3f3f3f
#define tulun int e[N],ne[N],h[N],w[N],idx;
#define add2(a,b) e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define add3(a,b,c) w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define T_solve() int T;cin>>T;while(T--)solve();
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<pair<int,int>,pair<int,int>> PIIII;
typedef double dob;
const int N=2e5+10;
int n;
void solve()
{
cin>>n;
pro_q<PII>heap;
rep2(i,1,n)
{
int cs;cin>>cs;
if(cs)heap.push({cs,i});
}
int num=0;
vector<PII>ans;
while(heap.size())
{
auto max1=heap.top();
heap.pop();
if(!heap.size())break;
auto max2=heap.top();
heap.pop();
int maxx1=max1.first,maxx2=max2.first;
num++;
maxx1--;
maxx2--;
ans.pb({max1.second,max2.second});
if(maxx1)heap.push({maxx1,max1.second});
if(maxx2)heap.push({maxx2,max2.second});
}
cout<<num<<endl;
int siz=ans.size();
rep1(i,0,siz)cout<<ans[i].first<<" "<<ans[i].second<<endl;
}
signed main()
{
quick_cin();
T_solve();
return 0;
}
2,最短路计数;
问1号点到其他点的最短路各有几条;
正常的最短路算法即可跑出1号点到其他路的最短路,求条数只需要中间加个条数的状态转移即可;
dist[j] > dist[t] +w[i] :到j的最短路条数等于到t的最短路条数;(因为j是选过来的一个最短路点,必定从t到j走一个,所以j只能由t走来)
dist[j] = dist[t] +w[i] : 到j的最短路条数需要加上到t的最短路条数,因为到j到t都可以,所以到两个点的最短路条数都算;
(这里理解下为什么这里是无向图用bfs且不用st判重,因为是往下一层更新距离的,而入队的条件只有距离还没被更新的时候,所以一旦距离确定了,肯定不会重复入队,所以这俩dist数组兼具st数组作用);
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define rep1(i,a,n) for(register int i=(a);i<(n);++i)
#define rep2(i,a,n) for(register int i=(a);i<=(n);++i)
#define per1(i,n,a) for(register int i=(n);i>(a);i--)
#define per2(i,n,a) for(register int i=(n);i>=(a);i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define memset(a,i,b) memset((a),(i),sizeof (b))
#define memcpy(a,i,b) memcpy((a),(i),sizeof (b))
#define pro_q priority_queue
#define pb push_back
#define pf push_front
#define endl "\n"
#define lowbit(m) ((-m)&(m))
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define yi first
#define er second
#define INF 0x3f3f3f3f
#define tulun int e[N],ne[N],h[N],w[N],idx;
#define add2(a,b) e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define add3(a,b,c) w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define T_solve() int T;cin>>T;while(T--)solve();
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<pair<int,int>,pair<int,int>> PIIII;
typedef double dob;
const int N=2e5+10;
const int mod=1e5+3;
tulun;
int n,m;
int cnt[N];
int dist[N],st[N];
void bfs()
{
cnt[1]=1;
queue<int>q;
q.push(1);
memset(dist,0x3f,dist);
dist[1]=0;
st[1]=1;
while(q.size())
{
int t=q.front();
q.pop();
for(int i=h[t];~i;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+1)
{
dist[j]=dist[t]+1;
q.push(j);
cnt[j]=cnt[t];
}
else if(dist[j]==dist[t]+1)
{
cnt[j]=(cnt[j]+cnt[t])%mod;
}
}
}
}
signed main()
{
quick_cin();
cin>>n>>m;
memset(h,-1,h);
while(m--)
{
int a,b;
cin>>a>>b;
add2(a,b);add2(b,a);
}
bfs();
rep2(i,1,n)cout<<cnt[i]<<endl;
return 0;
}
3,繁忙的都市;
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define rep1(i,a,n) for(register int i=(a);i<(n);++i)
#define rep2(i,a,n) for(register int i=(a);i<=(n);++i)
#define per1(i,n,a) for(register int i=(n);i>(a);i--)
#define per2(i,n,a) for(register int i=(n);i>=(a);i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define memset(a,i,b) memset((a),(i),sizeof (b))
#define memcpy(a,i,b) memcpy((a),(i),sizeof (b))
#define pro_q priority_queue
#define pb push_back
#define pf push_front
#define endl "\n"
#define lowbit(m) ((-m)&(m))
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define yi first
#define er second
#define INF 0x3f3f3f3f
#define tulun int e[N],ne[N],h[N],w[N],idx;
#define add2(a,b) e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define add3(a,b,c) w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define T_solve() int T;cin>>T;while(T--)solve();
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<pair<int,int>,pair<int,int>> PIIII;
typedef double dob;
const int N=2e5+10;
const int mod=1e5+3;
struct node
{
int a,b,w;
bool operator <(const node &b)
{
return w<b.w;
}
}edge[N];
int n,m;
int p[N];
int find(int x){return p[x]==x?x:p[x]=find(p[x]);}
int ans,cnt;
void kruskal()
{
rep2(i,1,n)p[i]=i;
sort(edge+1,edge+m+1);
rep2(i,1,m)
{
int a=edge[i].a,b=edge[i].b,w=edge[i].w;
a=find(a);
b=find(b);
if(a!=b)
{
ans=max(ans,w);
cnt++;
p[a]=b;
}
if(cnt==n-1)return;
}
}
signed main()
{
quick_cin();
cin>>n>>m;
rep2(i,1,m)
{
int a,b,w;
cin>>a>>b>>w;
edge[i]={a,b,w};
}
kruskal();
cout<<cnt<<' '<<ans;
return 0;
}
这三个条件明显的就是让你搞个最小生成树,然后找出选取的边的最大值;模板题;
4,联络员;
考虑必须边的特殊情况即可;
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define rep1(i,a,n) for(register int i=(a);i<(n);++i)
#define rep2(i,a,n) for(register int i=(a);i<=(n);++i)
#define per1(i,n,a) for(register int i=(n);i>(a);i--)
#define per2(i,n,a) for(register int i=(n);i>=(a);i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define memset(a,i,b) memset((a),(i),sizeof (b))
#define memcpy(a,i,b) memcpy((a),(i),sizeof (b))
#define pro_q priority_queue
#define pb push_back
#define pf push_front
#define endl "\n"
#define lowbit(m) ((-m)&(m))
#define YES cout<<"YES\n"
#define NO cout<<"NO\n"
#define Yes cout<<"Yes\n"
#define No cout<<"No\n"
#define yes cout<<"yes\n"
#define no cout<<"no\n"
#define yi first
#define er second
#define INF 0x3f3f3f3f
#define tulun int e[N],ne[N],h[N],w[N],idx;
#define add2(a,b) e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define add3(a,b,c) w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
#define T_solve() int T;cin>>T;while(T--)solve();
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<pair<int,int>,pair<int,int>> PIIII;
typedef double dob;
const int N=2e5+10;
const int mod=1e5+3;
struct node
{
int a,b,w;
int type;
bool operator <(const node &b)
{
if(type!=b.type)return type<b.type;
return w<b.w;
}
}edge[N];
int n,m;
int p[N];
int find(int x){return p[x]==x?x:p[x]=find(p[x]);}
int ans,cnt;
void kruskal()
{
rep2(i,1,n)p[i]=i;
sort(edge+1,edge+m+1);
int fj=0;
rep2(i,1,m)
{
if(edge[i].type!=1)
{
fj=i;
break;
}
int a=edge[i].a,b=edge[i].b;
a=find(a);
b=find(b);
if(a!=b)cnt++;
p[a]=b;
ans+=edge[i].w;
}
rep2(i,fj,m)
{
int a=edge[i].a,b=edge[i].b,w=edge[i].w;
a=find(a);
b=find(b);
if(cnt==n-1)break;
if(a!=b)
{
p[a]=b;
cnt++;
ans+=w;
}
}
}
signed main()
{
quick_cin();
cin>>n>>m;
rep2(i,1,m)
{
int type,a,b,w;
cin>>type>>a>>b>>w;
edge[i]={a,b,w,type};
}
kruskal();
cout<<ans;
return 0;
}