排序算法
介绍常见的排序算法以及JAVA实现代码
大宝贱
介个.....不好说
展开
-
希尔排序简介
随着增量的逐渐缩小,分组的元素逐渐增多,但此时已经基本有序,插入排序的效率也较高。它通过将待排序的数据按照一定的增量分组,对每个分组进行插入排序,然后逐渐缩小增量,再次对分组进行插入排序,直至增量为。通过分组插入排序和逐渐缩小增量的策略,希尔排序可以在一定程度上提前完成排序,减少了比较和数据移动的次数。增量序列:希尔排序的核心是增量序列的选择。增量序列决定了分组的方式,不同的增量序列会影响到排序的效率。希尔排序的时间复杂度与增量序列的选择有关,不同的增量序列会导致不同的时间复杂度。,完成最后一次插入排序。原创 2023-08-14 09:40:36 · 131 阅读 · 0 评论 -
插入排序简介
插入排序是一种简单直观的排序算法,它将待排序的元素分为已排序和未排序两部分,通过将未排序的元素逐个插入到已排序的部分中,最终完成排序。对于大规模乱序的数据,插入排序的性能较差,时间复杂度为O(n^2)。取出下一个元素,在已排序部分中从后往前比较,找到合适的位置插入。原地排序:插入排序只需要常数级的额外空间,不需要额外的数据结构。对于小规模数据或基本有序的数据,插入排序具有较好的性能。数据规模较小的情况下,插入排序是一个不错的选择。对于基本有序的数据,插入排序的性能较好。原创 2023-08-13 14:58:39 · 149 阅读 · 1 评论 -
堆排序简介
它的概念是通过将待排序的元素构建成一个二叉堆,然后通过不断地取出堆顶元素并重新调整堆的结构来实现排序。最大堆的特点是父节点的值大于其子节点的值,最小堆的特点是父节点的值小于其子节点的值。堆排序的主要缺点是在排序过程中,需要频繁地进行元素的比较和交换,因此相对于其他排序算法,它的性能较差。由于堆排序的每一次交换都是跨越较大的距离,因此对于顺序存储的数据,堆排序的缓存命中率较高。由于堆排序对数据的随机访问较多,因此在数据的存储方式为顺序存储时,堆排序的性能较好。不稳定排序算法,可能改变相同值的元素的相对顺序。原创 2023-08-19 13:39:00 · 827 阅读 · 0 评论 -
桶排序简介
桶排序是一种线性时间复杂度的排序算法,它通过将待排序元素分配到不同的桶中,对每个桶中的元素进行排序,然后按照桶的顺序依次将元素取出,从而实现排序的目的。桶排序适用于待排序元素分布均匀的情况,对于分布不均匀的数据,可能导致桶的数量不均衡,影响排序效率。桶排序适用于待排序元素分布均匀的情况,例如在对年龄、成绩等具有一定范围的数据进行排序时。桶排序需要额外的空间来存储桶,如果待排序元素数量较大,可能会占用较多的内存空间。桶排序的时间复杂度为O(n+k),其中n为待排序元素数量,k为桶的数量。原创 2023-08-21 10:05:40 · 362 阅读 · 0 评论 -
计数排序简介
计数排序是一种非比较的线性时间复杂度排序算法,它通过统计每个元素在待排序数组中出现的次数,然后根据统计信息将元素放回原数组中,从而实现排序。从后往前遍历待排序数组,根据count数组中的累加结果,将元素放入result数组中的正确位置。当待排序数组的元素范围较大时,计数数组的大小也会相应增大,导致算法的空间占用过大。算法的时间复杂度为O(n+k),其中n为待排序数组的大小,k为计数数组的大小。待排序数组中元素范围较小且分布均匀的情况下,计数排序是一个较好的选择。将result数组复制回原数组,排序完成。原创 2023-08-20 11:35:50 · 157 阅读 · 0 评论 -
选择排序简介
它的基本思想是每次从待排序的元素中选择最小(或最大)的元素放到已排序的序列的末尾。通过不断选择剩余元素中的最小(或最大)元素,最终得到一个有序序列。由于每次只交换一次元素,可能会导致相同元素之间的相对顺序发生改变,因此不是稳定的排序算法。在剩余的未排序序列中找到最小(或最大)元素,将其与序列的第二个元素交换位置。适用于小规模数据的排序,对于数据量较少的情况下,选择排序可以提供较好的性能。在未排序序列中找到最小(或最大)元素,将其与序列的第一个元素交换位置。算法实现简单,代码易于理解和调试。原创 2023-08-17 08:38:35 · 78 阅读 · 0 评论 -
冒泡排序简介
冒泡排序的基本思想是从数组的第一个元素开始,比较相邻的两个元素,如果它们的顺序不正确,则交换它们的位置。对于已经基本有序的数据集,可以通过设置标志位来提前结束排序过程,从而提高效率。对于小规模的数据集或基本有序的数据集,冒泡排序是一种可行的选择。冒泡排序的时间复杂度为O(n^2),其中n是待排序元素的个数。冒泡排序是一种稳定的排序算法,相等元素的相对位置不会改变。冒泡排序的时间复杂度较高,对于大规模的数据集效率较低。对于小规模的数据集,冒泡排序是一种有效的排序算法。原创 2023-08-12 17:46:43 · 115 阅读 · 1 评论 -
归并排序简介
这在某些应用中是很重要的,例如对学生信息按照成绩进行排序,如果有多个学生得分相同,稳定排序可以保持他们原来的顺序。大规模数据排序:归并排序对于处理大规模数据排序非常高效,因为它具有稳定的时间复杂度O(nlogn),其中n是待排序数据的数量。适用场景:归并排序适用于对大型数据集进行排序,尤其是外部排序,即数据无法全部加载到内存中进行排序的情况。需要额外的空间:归并排序需要额外的O(n)的空间来存储临时数组,可能会导致空间复杂度较高。稳定性:归并排序是一种稳定的排序算法,相同元素的相对顺序不会发生改变。原创 2023-08-15 09:43:26 · 205 阅读 · 0 评论 -
快速排序简介
快速排序是一种常用的排序算法,其基本思想是通过选取一个基准元素,将待排序序列划分成左右两个子序列,使得左子序列中的元素都小于等于基准元素,右子序列中的元素都大于等于基准元素,然后对左右子序列分别进行递归排序,最终得到一个有序序列。快速排序的平均时间复杂度为O(nlogn),最坏情况下为O(n^2),但通过合理选择基准元素和优化算法,可以避免最坏情况的发生。将序列分为两部分,左边是小于等于基准元素的子序列,右边是大于等于基准元素的子序列。合并左子序列、基准元素和右子序列,得到最终的有序序列。原创 2023-08-18 14:53:17 · 156 阅读 · 0 评论 -
基数排序简介
它的基本思想是通过将数据按照个位、十位、百位等进行排序,从而实现整体的排序目标。算法的时间复杂度为O(k*n),其中k是最大数字的位数,n是待排序数组的长度。当待排序数组的位数较少且数字范围较小时,基数排序是一种较为理想的排序算法。从最低位开始,将待排序数组中的数字按照当前位数的值放入对应的桶中。基数排序是稳定的排序算法,相同的数字在排序后的相对位置不会改变。首先,找到待排序数组中最大的数字,并确定其位数。当待排序数组的位数较大时,基数排序的效率会下降。当待排序数组的位数较少时,基数排序的效率较高。原创 2023-08-24 21:18:23 · 131 阅读 · 0 评论