2019.10.02模拟赛T3

题目大意:

  设$S(n,m)$为第二类斯特林数,$F_i$表示斐波那契数列第$i$项。

  给定$n,R,K$,求$\sum\limits_{i=1}^{n}(\sum\limits_{m=1}^{R}F_i)!i!\sum\limits_{l=0}^{i}\sum\limits_{j=0}^{\sum\limits_{t=1}^{R}F_t}\frac{S(k,i-l)}{l!}\frac{S(i,\sum\limits_{w=1}^{R}F_w-j)}{j!}$的值$mod$ $1000000007$。

  其中$n,R\leq10^{18}$,$k\leq2*10^5$

题解:

  (爽感)

  这道题...精神污染。。。当然也包括题解的$O(k)$做法。。。

  于是我就自己YY了一个$O(klogk)$的能过的做法.

  首先,需要知道三个小结论:

    1.$\sum\limits_{i=1}^{n}F_i=F_{n+2}-1$,用归纳法可以轻松证明。

    2.$m^n=\sum\limits_{i=1}^{m}S(n,i)C_m^ii!$

    3.$S(n,m)=\frac{1}{m!}\sum\limits_{i=0}^m(-1)^iC_m^i(m-i)^n$,本质上为结论2经二项式反演后的结果。

   证明一下第二个结论:

    考虑构造,把$n$个不同的球放入$m$个不同的盒子里,允许有空盒的方案数。

    显然,每个球都有$m$种选择方法,答案是$m^n$。

    换一种思维方式,可以想成枚举这$n$个球放入了那些盒子里,由于$S(n,m)$表示$n$个不同的球放入$m$个相同的盒子里无空盒的方案数,所以在乘上$C_m^ii!$。

  然后就可以开心的化式子了:

  设$L=\sum\limits_{m=1}^{R}F_i$,再把原式挪一下就变成了:

    $\sum\limits_{i=1}^{n}\sum\limits_{l=0}^{i}i!\frac{S(k,i-l)}{l!}\sum\limits_{j=0}^LL!\frac{S(i,L-j)}{j!}$

  然后我们神奇的发现后面的两个式子形式相同,以后一个为例:

    $\sum\limits_{j=0}^LL!\frac{S(i,L-j)}{j!}$,换成枚举$L-j$

    $=\sum\limits_{j=0}^LL!\frac{S(i,j)}{(L-j)!}$

    $=\sum\limits_{j=0}^LS(i,j)C_L^jj!$,这不就是结论2吗,直接等于$L^i$

  因此原式直接变为$\sum\limits_{i=0}^nL^ii^k$,但$n$依然很大。

  注意当$L=1$时式子变为$\sum\limits_{i=0}^ni^k$,需要用拉格朗日插值法求解,详见CF622F.

  若$L\neq1$,我的做法是把$i^k$变回斯特林数,即$\sum\limits_{i=0}^nL^i\sum\limits_{j=0}^kS(k,j)C_i^jj!$

  交换求和号,即$\sum\limits_{j=0}^kS(k,j)j!\sum\limits_{i=j}^nC_i^jL^i$,考虑如何快速求出$\sum\limits_{i=j}^nC_i^jL^i$。

  设$g(x)=\sum\limits_{i=x}^nC_i^xL^i$

  推导一波:

  $g(x)=\sum\limits_{i=x}^nL^iC_i^x$
  $=\sum\limits_{i=x}^nL^iC_{i-1}^{x-1}+\sum\limits_{i=x}^nL^iC_{i-1}^x$
  $=L\sum\limits_{i=x-1}^{n-1}L^{i}C_{i}^{x-1}+L\sum\limits_{i=x}^{n-1}L^{i}C_{i}^x$
  $=L(g(x-1)-L^nC_n^{x-1})+L(g(x)-L^nC_n^x)$

  在整理一下就是:$g(x)=\frac{Lg(x-1)-L^{n+1}C_{n+1}^x}{1-L}$,那么就可以$O(k)$的复杂度求出$g(x)$

  到此为止,原式变为$\sum\limits_{i=1}^kS(k,j)j!g(j)$,问题就剩下如何求第二类斯特林数$S(k,j)$了。

  应用第三个结论:$S(n,m)=\frac{1}{m!}\sum\limits_{i=1}^m(-1)^iC_m^i(m-i)^n$,将其化为卷积形式:

  $S(n,m)=\sum\limits_{i=1}^m\frac{(-1)^i}{i!}\frac{(m-i)^n}{(m-i)!}$$NTT$即可。

  又由于模数不是$NTT$模数,因此需要$MTT$来实现。

转载于:https://www.cnblogs.com/ldysy2012/p/11617981.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值