自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(111)
  • 收藏
  • 关注

原创 Midscene.js 深度测评:当 AI 接管 UI 自动化

如果说 Selenium 解决了「能不能自动化」的问题,Cypress/Playwright 解决了「好不好用」的问题,那么Midscene.js 则在解决「谁都能用」的问题。它让自动化测试不再是工程师的专属技能,而是任何人都能通过自然语言完成的事情。这既是一次生产力跃迁,也可能是测试行业的新拐点。📌 对企业来说,Midscene.js 可以降低测试人力成本、提升交付效率;对个人开发者,它能在原型验证和数据抓取中发挥巨大作用。

2025-09-19 10:00:51 864

原创 AI 编程代理实战手册:Cursor / Trae / Windsurf / Copilot / Claude Code / Gemini CLI / Qwen Code 的最佳实践与坑点(含模板与脚

统一工作流:无论哪款工具,都把流程固化为计划(Plan) → 执行(Do) → 验证(Test) → 提交(Summarize)四段式,拒绝“一把梭”。小步提交:强制「变更计划 → 批次执行 → 自动化测试 → 提交摘要」,让产物可审计、可回滚。白名单与沙盒:限定可写目录和可调用命令,把“聪明误事”的概率压到最低。度量闭环:以测试通过率、回滚率、Diff 可读性、重复产出率做周/迭代复盘。选型建议插件(Copilot):最低成本增强;AI 原生 IDE(Cursor / Trae / Windsurf)

2025-09-13 10:56:20 1219

原创 从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)

AI 编程代理不是“更聪明的自动补全”,而是把工程套路化把团队经验程序化的新接口。当它从 IDE 的个人体验,走到 CLI 的团队产线,才真正产生复利。从今天开始,用一条脚本把它接入你的项目吧。如果本文对你有帮助,就是最大的支持 🙌欢迎在评论区分享你在 Cursor / Trae / Windsurf / Copilot / Claude Code / Gemini CLI / Qwen Code 上的最佳实践与坑点,我们一起把“AI × 编码”的产线打磨得更可靠。

2025-09-13 10:52:55 1525

原创 DPO 深度解析:从公式到工程,从偏好数据到可复用训练管线

在经典 RLHF 中,我们需要两步曲:先训练奖励模型(RM)来拟合人类偏好,再用PPO去最大化该奖励,同时用KL 惩罚把策略拉回参考分布,避免模型“飘”。这条路有效,但工程链条长、超参多,还要求“采样—打分—反向传播”紧耦合,导致成本高与不稳定成为常态。PPO 的原始论文将“截断比率 + 近端目标”引入策略梯度以稳住更新,但依然要维护复杂的 RL loop。arXivDPO的关键点在于:不显式训练 RM,不写环境;它把“偏好”直接写进一个对比式的分类目标。

2025-09-12 21:36:42 1264

原创 DPO vs PPO,偏好优化的两条技术路径

特点PPODPO提出时间2017(RL 算法)→ RLHF2023(斯坦福团队)是否需要奖励模型✅ 需要❌ 不需要输入形式答案 + 奖励分数偏好对 (chosen, rejected)优化方式强化学习(on-policy)直接偏好对比(对比学习)训练稳定性相对复杂,易发散更稳定,收敛快适合场景在线训练,奖励函数明确(数学/代码/对话安全性)离线批量微调,数据是偏好对(人类标注/自我博弈)代表案例DeepSeek R1(自博弈 + DPO)

2025-09-12 21:28:20 935

原创 裁判函数 + 训练策略(可落地模板)

1)裁判优先级:先做“可验证”(Math/Code),再做“事实一致”(RAG),最后用“结构/风格”兜底;不可判样本宁可丢弃。2)生成策略:用温度日程制造分歧→收敛稳定;交叉对战维持多样性。3)训练闭环:自博弈 → 裁判 → 偏好对(DPO)→ 小步快跑迭代;需要在线反馈时接入 PPO。4)评测看趋势:dev win-rate、MathAcc、Factual@Top-k 持续上升,Toxicity 下降。

2025-09-09 09:59:40 1096

原创 基于 HuggingFace Transformers 的简易自我博弈训练脚本

自我博弈把“大模型训练”从“外部喂标签”推进到“内部生成与自我优化DPO 路线:自博弈生成多路径 → 自动裁判产偏好对 → DPOTrainer 稳定训练;PPO 路线:在线 reward 即时回传 → 策略持续改进,适合可验证任务与长周期优化。下一步你可以:把GSM8K/MATH或你业务内的可验证任务换入上面脚本;接入检索与事实核验,让开放问答的裁判更“客观”;做多模型博弈(不同家族模型互评互压),构造更强的偏好数据。

2025-09-09 09:55:21 950

原创 DeepSeek 模型的自我博弈原理深度解析

DeepSeek 的自我博弈范式,可以看作是大模型从“外部监督学习”向“内部驱动进化”迈出的关键一步。它不仅降低了成本,还打开了自动生成高质量训练数据的大门。多模型生态博弈:不同模型之间互相切磋,而非仅限于自我对局。混合奖励机制:结合人类反馈、AI 反馈、符号验证器,实现更稳健的优化。跨模态博弈:语言模型与视觉模型在多模态任务上进行自博弈,推动通用智能。DeepSeek 正在尝试的,是一种“模型自进化”的道路。它让我们看到,大模型不再仅仅依赖人类,而是逐渐具备了自我改进的能力。

2025-09-08 16:02:16 1350

原创 DeepSeek 的独立演化路径:自建训练体系与自博弈数据

DeepSeek 的故事并不是“抄作业”,而是另起炉灶。它通过自建训练体系 + 自博弈数据闭环,在有限算力下实现了快速迭代,证明了大模型不一定要依赖外部喂养,也能自我演化。这条路并不轻松,它要求团队同时精通算力调度、框架研发、强化学习。但一旦跑通,它就能形成一个独立的演化引擎。未来几年,大模型之争,或许不再只是“谁的算力更多”,而是“谁的进化机制更优”。欢迎在评论区分享你对Scaling Law vs 自演化路径的看法,你更看好哪种未来?

2025-09-08 10:46:30 1056

原创 大基座模型与 Scaling Law:AI 时代的逻辑与困境

当我们增加训练数据量、模型参数量和计算量时,模型的性能提升遵循幂律规律。换句话说:模型越大,越聪明;数据越多,泛化越好;算力越足,收敛越快。并且,这三者之间可以通过公式建模。一个简化的形式如下:N:参数数量D:数据量C:算力(计算 FLOPs)α, β, γ:经验拟合的幂律系数L∞:理论最优误差下界这意味着,只要我们不断加大 N、D、C,就能让 Loss(损失)持续下降,模型变得更强。从技术角度,Scaling Law 依然是 AI 的“可靠铁律”。

2025-09-05 21:16:48 1373

原创 DeepSeek vs Anthropic:技术路线的正面冲突

从表面看,这是商业竞争;但从深层看,这是三重叙事的冲突路线之争:基座模型 vs 独立推理护城河保卫战:算力壁垒 vs 工程效率政策游说:开放竞争 vs 出口管制一句话结论:DeepSeek 用技术证明“推理≠算力”,这才让 Anthropic 如坐针毡。

2025-09-05 21:01:10 780

原创 为什么大模型依旧依赖滑动窗口处理信息?

假设我们要用 GPT 处理一本 50 万字的小说,窗口只有 32K token(约 2.5 万字)。直接丢进去 → 超过窗口长度 →前半本书会被遗忘。分块 + 总结:先把小说切成章节,分别总结,再做二次汇总。检索增强生成 (RAG):建立向量索引,模型只检索相关片段。即使在 2025 年,大模型依旧依赖滑动窗口来处理信息。这是工程与计算的必然结果:注意力复杂度 O(N²) 决定了序列不可能无限扩展。窗口是短时记忆,而长期记忆必须依赖外部工具:RAG、数据库、知识图谱。这不是缺陷,而是架构选择。

2025-09-02 06:30:00 1141

原创 AR-LSAT 推理任务全解析:从逻辑推理到类比推理的挑战

AR-LSAT 的提出,让我们认识到:大模型在类比推理上依旧脆弱,容易被表面语义迷惑。在逻辑任务上仍然有效,但需要进一步结合符号逻辑。它是通向“类人推理”的必要台阶。神经网络 + 符号逻辑结合,避免模型只凭统计模式解题。类比推理专用训练,让模型熟悉不同逻辑结构的映射。跨领域迁移:如果模型能通过 AR-LSAT,就能在法律、金融、科研决策等领域发挥更强的推理作用。换句话说,GSM8K 测算术,MATH 测数学,AR-LSAT 则真正测逻辑与思维的本质。

2025-09-01 21:39:33 1127

原创 MATH 推理任务全解析:大模型的“高中数学试炼场”

MATH 数据集的意义,远不止是一份题库。它代表了大模型推理从“能算账”走向“能解题”的关键一步。它逼迫研究者面对更复杂的逻辑链条:如何处理代数推导、数论整除性、概率组合?它推动了 CoT 与 Self-Consistency 的广泛应用:没有这些方法,大模型在 MATH 上几乎寸步难行。它直接催生了数学专用大模型:Minerva、MathGPT、Qwen-Math,这些模型都以 MATH 为训练基准。未来,随着符号推理(Symbolic Reasoning)+ 神经网络。

2025-09-01 17:27:23 990

原创 GSM8K 原理全解析:从数学推理基准到大模型对齐的试金石

GSM8K 的价值,不仅在于它是一份数学题集,更在于它推动了推理范式的变革。它证明了的巨大潜力(CoT 一行代码能提升几十个百分点)。它引导研究者发现一致性投票多样化生成的力量。它成为对齐训练 (Alignment)的核心数据集之一,直接推动了 GPT-4、Claude 等模型在推理能力上的突破。展望未来,GSM8K 可能会被更大规模的GSM-HardMATH+数据集替代,但它的历史地位不会消失。它就像 MNIST 之于计算机视觉:简单,却奠定了一个时代的评测基准。

2025-09-01 17:03:51 1368

原创 使用 JavaScript 构建 RAG(检索增强生成)库:原理与实现

RAG 是一种将大语言模型与外部信息检索相结合的技术。具体来说,它将用户查询通过检索引擎与外部知识库中的文档匹配,获得相关的信息片段,然后将这些信息与用户问题一同输入生成模型,生成更为准确的答案。提升生成质量:通过引入外部文档信息,能够帮助语言模型避免“幻觉”现象(即模型生成不准确或不相关的内容)。降低模型复杂度:不需要预先训练一个巨大的语言模型来记住所有知识,模型只需要生成相关信息的解释或答案。提高上下文准确性:在对话或查询场景下,能基于特定文档回答问题,提供更具上下文的答案。

2025-08-30 20:41:04 1118

原创 LangChain.js 实战与原理:用 LCEL 构建可维护的 RAG / Agent 系统(含 4 套 30+ 行代码)

如果把“大模型应用”视作一条生产线,那么LangChain就是把“模型—数据—工具—记忆—流程”串起来的那套输送带。很多人先接触的是 Python 版,但同构能力:Node 端做服务、浏览器端做交互与本地推理,一套 TypeScript 类型体系贯穿前后端。生态贴近前端:容易与 React/Vue、Web Worker、Service Worker、Edge Runtime(Vercel/Cloudflare)融合。部署轻量。

2025-08-30 20:38:47 733

原创 运行时与编译时:深入理解二者的区别

编译时指的是源代码被编译器处理并转换为机器码或字节码的过程。在编译时,程序的静态特性会被检查和处理,例如语法错误、类型检查和代码优化等。在编译时,编译器将程序的源代码转换为目标代码或字节码。这一过程的核心任务是通过编译器的分析,将程序转换为机器可以执行的代码。在这一过程中,很多错误(如语法错误、类型错误等)会被检测出来,并阻止程序的执行,直到这些问题得到修正。运行时指的是程序在执行过程中所发生的一切。在运行时,程序的行为是动态的,程序的运行依赖于系统环境、用户输入、资源状态等因素。

2025-08-29 15:40:53 905

原创 了解 JavaScript 虚拟机(VM)引擎

虚拟机(VM)是一种能够运行中间代码(字节码)并提供抽象层的软硬件系统。对于 JavaScript 而言,虚拟机引擎就是负责解析和执行 JavaScript 代码的环境。它将我们编写的高层次的 JavaScript 代码转化为计算机能理解的低级指令,并执行这些指令。JavaScript 的虚拟机引擎并不是一个单一的东西,而是由多个组件组成,这些组件一起工作,确保 JavaScript 代码的快速执行、内存管理和错误处理。

2025-08-29 15:37:07 795

原创 魔法提示的结束:从许愿到系统构建

缓冲区记忆:保留最近 N 次对话摘要记忆:将历史压缩成简短笔记混合策略:近期保留,远期压缩A[输入新问题] --> B{上下文窗口足够?B -- 是 --> C[直接处理]B -- 否 --> D[调用记忆模块]D --> E[缓冲区保存 / 摘要压缩]E --> C“魔法提示的结束”,不是失落,而是开始。真正的价值,不在于找到某个万能的词语,而在于构建能持续运作的系统。未来的竞争力,不是“谁会写提示”,而是“谁能构建更稳健的 AI 系统”:会不会设计链条、优化记忆、部署代理、调校模型。

2025-08-28 06:30:00 771

原创 LangChain.js 从入门到进阶:用 JavaScript/TypeScript 构建可落地的 RAG 与智能体系统

解释:LangChain.js 是 JavaScript/TypeScript 生态下的“AI 应用搭建框架”。它强调“链式思维 + 组件化拼装”,让我们把大模型的推理变成可编排的流程,并在浏览器、Node、Cloudflare Workers、Vercel Edge 等环境平滑运行。示例:同样是“问答机器人”,纯提示(prompt)方案容易不稳定、不可控;而用 LangChain.js,我们可以把问题分解为“检索 → 归并 → 生成 → 校对”,每步是独立的Runnable,易于调试与复用。对比。

2025-08-28 06:30:00 1466

原创 Claude 提示语工程实战:为什么它比 GPT 更适合写代码?

长上下文→ 更适合处理完整代码库。宪法 AI→ 输出更安全、更规范,减少幻觉。合作者型风格→ 代码不仅给结果,还给理由与改进方向。提示语敏感性→ 更容易通过提示语收敛到稳定输出。个人开发者:Claude 更适合作为“代码助手”,帮助快速原型开发。团队协作:Claude 在审查、重构、生成测试上能节省大量人力。企业应用:Claude 的合规性更适合金融、法律、政府 IT 项目。Claude 成为代码工作流中的标准合作者,而 GPT 成为通用问题求解器。

2025-08-27 07:00:00 1284

原创 30 行跑通 LangChain.js RAG(Node)

一段仅依据你提供文档生成的回答,且能复用到更大的私域知识库中(只需把。替换为你的 Markdown、FAQ 或导入的 PDF 文本即可)。把你自己的文档喂给大模型,回答就不再“瞎编”。官方文档(JS 版)👉。

2025-08-27 07:00:00 310

原创 LangChain.js 入门实战 | 前端如何构建 RAG 应用

本文我们完成了从背景 → 原理 → 实战 → 对比背景:RAG 解决了大模型的幻觉问题原理:LangChain.js 把 LLM 应用抽象为模块,可组合可扩展实战:通过内存向量库、PDF 加载、Agent 工具调用实现 RAG 应用对比:LangChain.js 更适合前端/全栈,Python 更适合研究/后端未来,随着普及,前端工程师将能在浏览器直接构建AI Native 应用。LangChain.js 可能会成为前端世界的 AI 基础设施,就像 React 之于 UI 开发。

2025-08-27 07:00:00 1449

原创 前端也能玩转大模型!

别再以为 LLM 应用只能靠 Python,其实在里,也有一批优秀框架。我挑了,适合 Node.js / 浏览器 / Cloudflare Workers 场景:👇 来看详细介绍。

2025-08-27 06:30:00 396

原创 Claude 的优势深度解析:大模型竞争格局中的隐藏护城河

更安全的对齐机制(宪法 AI)更长的上下文处理能力(200K+)更自然的交互体验(伙伴式对话)这三者共同形成了 Claude 的“隐藏护城河”。追求极致性能→ 选 GPT 系列。追求合规、安全、长文档处理→ Claude 更优。未来很可能是Claude 与 GPT 并存的格局。正如操作系统有 Windows 与 macOS,各自占据优势场景。💡互动讨论你更看重 Claude 的“安全性”还是 GPT 的“性能”?在你的项目或团队里,你会首选哪一个?📌友情提示:Claude 目前提供。

2025-08-26 21:14:20 1253

原创 Vibe 编程:下一代开发者范式的深度解析

Vibe 编程不是银弹,但它提供了一种极具潜力的新型工程思维用状态机兜住复杂业务用信号和流表达变化用动作管理副作用未来,随着 AI、IoT、复杂中台系统的发展,我们可能会看到Vibe 编程被纳入主流框架。就像当年响应式编程从冷门学术概念走向 RxJS 一样,Vibe 或许也会成为新一代开发者的日常工具。📌XState 官方文档– Vibe 编程的现实原型之一RxJS Guide– 流式编程的经典参考– 状态机的学术基础。

2025-08-26 21:01:35 1178

原创 AI + 表格:表头 / 多级表头结构抽取与合并单元格逻辑补全的工程化落地

现实世界中的业务报表(尤其是财务与运营类),在表头层级复杂合并单元格频繁跨页/跨区域漂移的情况下,很难用单一规则稳定解析。即便是 Excel 文件,也会因为“多人维护”“模板漂移”“临时合并/拆分”而导致结构多变。工程上,我们需要一个稳态输出1)抽取稳定结构的表头树,2)补全合并单元格信息,3)统一输出到标准列名/路径,以便下游做校验、对账、汇总、对比。视觉布局不确定(合并/缩进/换行)、语义不确定(列名口径不同)、边界不确定(缺值、跨页、错位)。因此,纯 OCR/LLM或纯规则。

2025-08-25 10:52:57 1498

原创 用 AI 破解异构报表:字段语义识别的原理与实践

把机器推向“理解”而非“比对”。LLM + 知识图谱:不仅识别语义,还能理解字段间的业务关系。主动学习:让系统在人工修正中自动进化,越用越准。端到端集成:字段识别、报表对齐、差异分析、可视化一体化,彻底替代人工。该用 AI 的地方,就要大胆用 AI。因为只有让机器具备语义理解,才能真正释放数字员工的价值。

2025-08-25 10:45:29 739

原创 TripPlanner AI——智能旅行行程生成器:从约束优化到 LLM 的协同落地

TripPlanner AI 的关键,不是“一个更聪明的大模型”,而是把问题分层让 LLM 专注“把人话转成参数/把参数讲成人话让求解器专注“把不可行变可行/把可行变更优让前端把“可视化修改”落实为回流求解。当你把偏好参数化、把约束结构化、把数据可验证化,“行程生成”就从“创意文案”变成了“可运营的产品”。下一步可以尝试:加入多人偏好冲突求解与分组策略;做预算/省时/省力三轴的Pareto 前沿;支持ICS 导出与票务/预约联动;用在线 A/B持续优化权重。

2025-08-22 09:19:53 1158

原创 十大创意 RAG + LLM 项目构想(2025–26版)

应用场景:个性化新闻聚合、市场情报简报、媒体监控技术栈:新闻 API/RSS、LangChain、Pinecone/FAISS、LLM(摘要)实现步骤:抓取新闻 → 嵌入 → 检索 → 多篇聚合 → LLM 输出总结。升级建议:加入情感分析、趋势图、事实核查功能。RAG 的核心价值是把 LLM 的“生成力”与外部数据的“事实力”结合。这十个项目各有领域:开发、法律、医疗、教育、新闻、旅行、电商、求职、知识管理、生活方式。无论你是学生、工程师还是数据科学家,都能从中挑一个切入点,把它做成作品集里的亮点。

2025-08-22 09:09:17 1189

原创 如何解决大模型缺乏推理能力、只能“找相似”的问题?

大模型的本质是语言统计机器,它天生缺乏逻辑推理能力。但这并不是不可解决的问题,而是需要通过工程化增强来补足:用Prompt 工程(CoT、Few-Shot)引导思维链用工具调用弥补模型的弱算力用符号逻辑系统构建可验证的推理用强化学习与训练优化逐步逼近真正的“推理能力”未来,大模型不会单独存在,而是作为混合智能系统的核心模块。当它与逻辑推理器、知识图谱、工具链融合,我们将看到真正具备推理能力的AI 2.0。💡 你认为未来的大模型会完全学会逻辑推理,还是永远需要“外挂工具”?

2025-08-21 14:30:05 941

原创 大模型应用工程化:从原理到落地实践

大模型应用的未来,不仅仅是“调用 API”,而是走向一种新型软件工程范式。协议化:像 MCP 一样,定义模型与工具的接口标准组件化:像 LangChain 一样,把能力拆分成可组合的模块多智能体化:像人类团队一样,多个智能体协作解决复杂问题未来的大模型应用开发者,既要理解深度学习原理,也要掌握工程架构设计。在这个交叉地带,蕴含着巨大的机会。💡 你是否也在尝试把大模型应用到实际业务中?

2025-08-21 14:24:38 724

原创 Vibe Coding:轻松的幻觉,沉重的未来

Vibe Coding 让编程变得前所未有的轻松,这是一种革命;但它也让工程问题前所未有地沉重,这是另一种必然。如果你是开发者,千万别只沉迷于“氛围”,而要学会问自己:我能不能利用 Vibe,写出不仅能跑,而且能活得久的代码?

2025-08-20 15:43:07 261

原创 Vibe Coding:当编程变成一种“氛围”

所谓 Vibe Coding,直译就是“氛围编程”。这个词最早由 Karpathy 提出,他描述自己用大模型写代码时的体验:“这已经不太像写代码了,我只是看、说、运行、复制粘贴,大多数时候都能用。换句话说,在 Vibe Coding 模式下,人不再是亲自写每一行代码的“码农”,而是通过自然语言给 AI 描述意图,由 AI 负责生成实现。开发者更多是一个导演、引导者,而 AI 是执行编剧。Vibe Coding 最大的意义,是把编程门槛拉到了“会说话”的水平。

2025-08-20 15:41:58 596

原创 自注意力机制深度讲解:从直觉到工程

自注意力的本质是上下文条件下的可学习检索与融合用Q·K做“可学习的相似度”;用softmax把相似度变成概率分布;用分布对 V 取期望得到新的表示;用多头把复杂关系分解到不同子空间;用位置编码/掩码施加任务先验;用高效内核/稀疏/核近似把算力问题降维打击。当你把这几件事想通并跑通,自注意力就不仅是一个公式,而是一种极其通用的信息路由范式:谁该跟谁沟通、沟通多少、以什么方式沟通,全都由数据驱动、端到端学习出来。它之所以改变了 NLP、CV、语音乃至多模态的版图,原因正在此。

2025-08-19 08:49:18 956

原创 3分钟大模型入门指南

传统机器学习:依赖特征工程,需要人类手工设计特征。深度学习:通过神经网络自动提取特征,突破图像识别、语音识别。大模型(LLM):用海量数据和参数(通常数百亿到数万亿),通过 Transformer 架构训练,具备了“通用语言理解和生成能力”。小模型像是“专才”,在某个任务上表现出色。大模型则是“通才”,不需要特定训练就能完成对话、翻译、写代码、总结报告等各种任务。如果你是普通用户:大模型是你的“智能助手”,学会写好提示(prompt),就能大幅提升效率。如果你是开发者。

2025-08-19 08:45:39 1354

原创 为什么渐进增强(Progressive Enhancement)仍然重要

文章摘要: 过去二十年,前端开发从静态HTML演进到现代框架,渐进增强原则逐渐被忽视。然而在移动优先、网络环境复杂的今天,渐进增强反而更加重要。其核心是分层思维:HTML提供基础内容,CSS增强表现,JavaScript优化交互,确保应用不依赖最脆弱环节。现代前端过度依赖JS,导致弱网和低端设备体验差,且损害可访问性。渐进增强并非反对框架,而是强调基础可用性,能为AI解析、性能优化和长期维护带来优势。它是Web可持续性的基础,而非怀旧情怀。

2025-08-18 16:14:01 538

原创 GPT-5 与前端开发者的选择冒险:React 还需要吗?

从 React 之于前端,到 GPT-5 之于 AI 辅助开发,我们正在见证另一个开发范式的更替。如果说 React 代表了“框架即支撑物”的时代,那么 GPT-5 则在提示我们进入“AI 即支撑物”的时代。未来的前端开发者,可能不再是先问“选 React 还是 Vue?”,而是先问“用 GPT-5 生成脚手架,还是 Claude Code 搭原型?而框架的角色,将从必需品,逐渐变成优化器。React 不会消失,但 AI 正在重写我们为什么、何时需要它。

2025-08-18 16:09:40 357

原创 OpenAI TTS API + Web 前端 AudioContext 实战方案

本文给你一套「能跑起来」的实战方案:既有最稳妥的,也给出的思路与样例。。生产里一律走你自己的后端(或 Edge Function)做签名与转发。API 形态与可用模型以官方文档为准。

2025-08-16 15:48:37 1217

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除