树状数组 / 二维树状数组

一维树状数组

· 单点修改 + 单点查询:

  直接使用即可

· 区间修改 + 单点查询:

  另外维护一个维护前缀和的树状数组,查询时查询与原值相加即可。

· 区间修改 + 区间查询:

  若要查询区间$[1, R]$的区间和,可推公式,其中$D[i]$表示差分数组:

$\sum\limits_{i=1}^R \sum\limits_{j=1}^i D[j]$
 
$= \sum\limits_{i=1}^R (R - i + 1) * D[i]$
 
$= (x + 1) \sum\limits_{i=1}^R D[i] -  \sum\limits_{i=1}^R (i * D[i])$

   此时维护$\sum D[i]$及$\sum (i * D[i])$就好了。

 

二维树状数组

· 单点修改 + 单点查询:

  二维树状数组就是在一维的基础上维护一个矩阵,直接维护即可。

· 区间修改 + 单点查询:

  由$Sum[i][j] = Sum[i - 1][j] + Sum[i][j - 1] - Sum[i - 1][j - 1] + a[i][j]$得到启发,可以维护形似$a[i][j] -> a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1]$的差分数组,加如下代码即可:

void Add_Main (int x1, int y1, int x2, int y2, int delta) {
    Add (x1, y1, delta);
    Add (x2 + 1, y1, - delta);
    Add (x1, y2 + 1, - delta);
    Add (x2 + 1, y2 + 1, delta);
}

· 区间修改 + 区间查询:

  推公式,可以由每个二元组$(x, y)$的出现次数得:

$\sum\limits_{x=1}^n\sum\limits_{y=1}^m\sum\limits_{i=1}^x\sum\limits_{j=1}^yD[i][j]$
 
 
$= \sum\limits_{x=1}^n\sum\limits_{y=1}^m D[x][y] (n - x + 1) (m - y + 1)$
 
 
$= \sum\limits_{x=1}^n\sum\limits_{y=1}^m (D[x][y] (n + 1) (m + 1) - D[x][y] (n + 1) * y - D[x][y] (m + 1) * x + D[x][y] * x * y)$

 

  同一维树状数组的区间修改 + 区间查询,维护四个二维树状数组即可。

· 完整代码:

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 
  5 using namespace std;
  6 
  7 typedef long long LL;
  8 
  9 const int MAXN = 2048 + 10;
 10 
 11 int N, M;
 12 
 13 char opt[5];
 14 
 15 int lowbit (int x) {
 16     return x & (- x);
 17 }
 18 
 19 int Tree1[MAXN][MAXN]= {0};
 20 int Tree2[MAXN][MAXN]= {0};
 21 int Tree3[MAXN][MAXN]= {0};
 22 int Tree4[MAXN][MAXN]= {0};
 23 
 24 void Add (int x, int y, int delta) {
 25     int tx = x, ty = y;
 26     while (x <= N) {
 27         y = ty;
 28         while (y <= M) {
 29             Tree1[x][y] += delta;
 30             Tree2[x][y] += ty * delta;
 31             Tree3[x][y] += tx * delta;
 32             Tree4[x][y] += tx * ty * delta;
 33             y += lowbit (y);
 34         }
 35         x += lowbit (x);
 36     }
 37 }
 38 
 39 void Add_Main (int x1, int y1, int x2, int y2, int delta) {
 40     Add (x1, y1, delta);
 41     Add (x2 + 1, y1, - delta);
 42     Add (x1, y2 + 1, - delta);
 43     Add (x2 + 1, y2 + 1, delta);
 44 }
 45 
 46 int Query (int x, int y) {
 47     int tx = x, ty = y;
 48     int cnt = 0;
 49     while (x >= 1) {
 50         y = ty;
 51         while (y >= 1) {
 52             cnt += (tx + 1) * (ty + 1) * Tree1[x][y];
 53             cnt -= (tx + 1) * Tree2[x][y];
 54             cnt -= (ty + 1) * Tree3[x][y];
 55             cnt += Tree4[x][y];
 56             y -= lowbit (y);
 57         }
 58         x -= lowbit (x);
 59     }
 60 
 61     return cnt;
 62 }
 63 
 64 int Query_Main (int x1, int y1, int x2, int y2) {
 65     return Query (x2, y2) - Query (x2, y1 - 1) - Query (x1 - 1, y2) + Query (x1 - 1, y1 - 1);
 66 }
 67 
 68 int getnum () {
 69     int num = 0;
 70     char ch = getchar ();
 71     int flag = 0;
 72 
 73     while (! isdigit (ch)) {
 74         if (ch == '-')
 75             flag = 1;
 76         ch = getchar ();
 77     }
 78     while (isdigit (ch))
 79         num = (num << 3) + (num << 1) + ch - '0', ch = getchar ();
 80 
 81     return flag ? - num : num;
 82 }
 83 
 84 int main () {
 85     scanf ("%s", opt + 1);
 86     N = getnum (), M = getnum ();
 87 
 88     while (~ scanf ("%s", opt + 1)) {
 89         if (opt[1] == 'L') {
 90             int x1, y1, x2, y2;
 91             int delta;
 92             x1 = getnum (), y1 = getnum (), x2 = getnum (), y2 = getnum ();
 93             delta = getnum ();
 94 
 95             Add_Main (x1, y1, x2, y2, delta);
 96         }
 97         else {
 98             int x1, y1, x2, y2;
 99             x1 = getnum (), y1 = getnum (), x2 = getnum (), y2 = getnum ();
100 
101             int ans = Query_Main (x1, y1, x2, y2);
102             printf ("%d\n", ans);
103         }
104     }
105 
106     return 0;
107 }
108 
109 /*
110 X 4 4
111 L 1 1 3 3 2
112 L 2 2 4 4 1
113 k 2 2 3 3
114 */
二维树状数组(区间修改 + 区间查询)

 

转载于:https://www.cnblogs.com/Colythme/p/9853159.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值