属于
傅里叶级数分析使用的条件:
傅里叶在提出
傅里叶级数时坚持认为,任何一个周期信号都可以展开成傅里叶级数,虽然这个结论在当时引起许多争议,但持异议者却不能给出有力的不同论据。直到20年后(1829年)狄里赫利才对这个问题作出了令人信服的回答,狄里赫利认为,只有在满足一定条件时,周期信号才能展开成
傅里叶级数。这个条件被称为狄里赫利条件,其内容为
(2)在一个周期内,
函数有有限个极大值或极小值。
(3) x(t)在单个周期内绝对可积,即

关于傅里叶级数和傅里叶积分可以参考《高等数学》
附:
第一类间断点
非第一类间断点即为
第二类间断点(discontinuity point of the second kind)。
第一类间断点必没有原函数,第二类则不定。
第二类间断点:
第二类间断点:
函数的左右极限至少有一个不存在。