import tensorflow as tf # 在不同的变量域中调用conv_relu,并且声明我们想创建新的变量 def my_image_filter(input_images): with tf.variable_scope("conv1"): # Variables created here will be named "conv1/weights" ,"conv1/biases" relu1 = conv_relu(input_images, [5, 5, 32, 32], [32]) with tf.variable_scope("conv2"): # Variables created here will be named "conv2/weights" , "conv2/biases" return conv_relu(relu1, [5, 5, 32, 32], [32]) # 如果你想分享变量,你有两个选择,第一你可以创建一个有相同名字的变量域,使用reuse=True with tf.variable_scope("model"): output1 = my_image_filter(input1) with tf.variable_scope("model", reuse=True): output2 = my_image_filter(input2) # 你也可以调用scope.reuse_variables()来触发一个重用: with tf.variable_scope("model") as scope: output1 = my_image_filter(input1) scope.reuse_variables() output2 = my_image_filter(input2) # 因为解析一个变量域的名字是有危险的 # 通过一个变量来初始化另一个变量也是可行的 with tf.variable_scope("model") as scope: output1 = my_image_filter(input1) with tf.variable_scope(scope, reuse=True): output2 = my_image_filter(input2)