计算机视觉
文章平均质量分 89
计算机视觉与图像相关;
AIHUBEI
⏭逐梦江城、饮武当茶、恋鄂北家⏮
展开
-
文档智能(一):基于OpenCV的文档图像校正
本文讨论了文档智能的基本任务,并以文档图像校正任务为例,使用OpenCV工具库实现了文档图像的校正。校正后的图像,将为文档智能后续任务提供遍历。比如:基于扭曲、旋转的头像进行光学字符识别,识别精度将大打折扣。原创 2023-01-07 22:25:55 · 4388 阅读 · 3 评论 -
神经网络漫谈(一):科普篇
本文简要介绍了神经网络训练学习的基本过程,并以图像分类为例,介绍了模型权重更新,模型推理的基本流程。作为神经网络漫谈系列的第一章。原创 2023-01-06 22:35:53 · 1417 阅读 · 4 评论 -
深度卷积神经网络(NiN)--Pytorch实现
网络中的网络(NiN)(10月14号(组内)–d2l)深度卷积神经网络(NiN)LeNet、AlexNet 和 VGG 都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。AlexNet 和 VGG 对 LeNet 的改进主要在于如何扩大和加深这两个模块。或者,可以想象在这个过程的早期使用全连接层。然而,如果使用稠密层了,可能会完全放弃表征的空间结构。网络中的网络 (NiN) 提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知原创 2021-10-14 16:31:33 · 915 阅读 · 1 评论 -
视锥的基本理解
了解视锥__视锥体__一词表示看起来像顶部切割后平行于底部的金字塔的实体形状。这是透视摄像机可以看到和渲染的区域的形状。以下思维实验应该有助于解释为什么会这样。想象一下,将一根直杆(例如扫帚柄或一支铅笔)正对着摄像机,然后拍照。如果杆垂直于摄像机镜头保持在图片中心位置,那么只有其一端可在图片上显示为圆圈;所有其他部分都会被遮挡。如果将杆向上移动,下侧将开始变得可见,但可通过向上倾斜杆再次将其隐藏。如果继续向上移动杆并进一步将其向上倾斜,则圆形末端最终将到达图片的顶部边缘。此时,在世界空间中由此杆跟踪翻译 2021-10-13 17:07:06 · 2616 阅读 · 0 评论 -
多源信息融合_BIM+GIS的深度融合之路
多源信息融合_BIM+GIS的深度融合之路 “BIM+”时代的到来,推动了大型设计、施工企业产业化转型升级。BIM与GIS是如何跨界融合的?期间遇到了哪些技术难点?本文将结合超图经验回顾BIM+GIS的深度融合之路,一起探究未来发展方向。 图1 立交桥的BIM数据与天地图影像数据叠加显示 近年来,BIM(Building Information Modeling,建筑信息模型)技术的快速发展,...转载 2021-08-26 22:05:35 · 3097 阅读 · 0 评论 -
利用转置卷积与WGAN提升图像数据生成的质量
通过使用卷积与Wasserstein GAN提升生成图像的质量本文将实现deep convolutional Gan(DCGAN),同时也将实现Wasserstein GAN(WGAN)。本文使用到的一些技术:转置卷积Transposed convolution批量归一化Batch NormalizationWGANGradient penaltyfrom IPython.display import Image%matplotlib inline转置卷积虽然卷积运原创 2021-07-27 22:40:38 · 1007 阅读 · 0 评论 -
利用Tensorflow构建生成对抗网络GAN以生成数据
使用生成对抗网络(GAN)生成数据本文主要内容介绍了自动编码器的基本原理比较了生成模型与自动编码器的区别描述了GAN模型的网络结构分析了GAN模型的目标核函数以及训练过程介绍了利用Google Colab进行模型训练的基本步骤设计并实现了简单的GAN网络,进行了网络训练以及模型评估from IPython.display import Image%matplotlib inline生成对抗网络的简单介绍首先从自动编码器开始–autoencodersIma原创 2021-07-26 18:21:02 · 2318 阅读 · 1 评论