勾股数

简介
所谓勾股数,一般是指能够构成 直角三角形三条边的三个正整数(例如a,b,c)。
即a²+b²=c²,a,b,c∈N
又由于,任何一个 勾股数组(a,b,c)内的三个数同时乘以一个 整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c 互质的勾股数组。
关于这样的数组,比较常用也比较实用的套路有以下两种  [4]  :

第一类型

当a为大于1的 奇数2n+1时,b=2n²+2n, c=2n²+2n+1。
实际上就是把a的 平方数拆成两个 连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
……
这是最经典的一个套路,而且由于两个连续自然数必然 互质,所以用这个套路得到的勾股数组全部都是互质的。

第二类型

2、当a为大于4的偶数2n时,b=n²-1, c=n²+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
……
这是第二经典的套路,当n为奇数时由于(a,b,c)是三个 偶数,所以该勾股数组必然不是 互质的;而n为偶数时由于b、c是两个连续奇数必然 互质,所以该勾股数组互质。
所以如果你只想得到互质的数组,这条可以改成,对于a=4n (大于等于2), b=4n²-1, c=4n²+1,例如:
n=2时(a,b,c)=(8,15,17)
n=3时(a,b,c)=(12,35,37)
n=4时(a,b,c)=(16,63,65)

转载于:https://www.cnblogs.com/caijiaming/p/11396426.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值