[JZOJ 5810] 简单的玄学

思路:
就是考虑一个结论
对于\(1<=x<=2^n\),那么\(x\)\(2^n - x\)中的2的个数相等。
证明:
我们将\(x\)表示成\(2^k*b\),那么\(2^n - x\)就是\(2^n - 2^k*b\)当消去\(k\)个2之后,剩下的就是\(2^n - b\)显然不能被2除了(因为b显然不是一个偶数),
那么我们推出来的概率式子为:
\(1 - {\prod_{i=2^n-m+1}^{2^n-1} i\over 2^{n(m-1)}}\)
问题的瓶颈就是如何求分子的2的个数,应用上面的结论可以将分子化为:
如何求\((m-1)!\)里的2的个数。
简单了,随便枚举一下就可以了。
值得一提的是,这题的数据范围有毒,考虑到当\(m > mod\)时,显然取模为0,所以出题人很好心的没有给\(10^{18}\)的点。
代码我不知道为什么老是爆炸...

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int mod = 1e6+3;
inline ll pow_mod(ll a,ll b) {
    ll res = 1;
    while(b) {
        if(b & 1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

ll n,m;
ll ans;
int main () {
    freopen("random.in","r",stdin);
    freopen("random.out","w",stdout);
    scanf("%d %d",&n,&m);
    if(m > mod) {
        puts("0 0");
        return 0;
    }
    if(log2(m) > n) {
        puts("1 1");
        return 0;
    }
    ll t1 = pow_mod(2,n);
    ll t2 = pow_mod(t1,m-1);
    for(int i = 1;i < m; ++i) {
        int tmp = i;
        while(!(tmp & 1)) {
            ans ++;
            tmp >>= 1;
        }
    }
    ll fz = 1;
    for(int i = 1;i < m; ++i) {
        fz = fz * (t1 - i);
    }
    fz /= pow(2,ans);
    ll fm = pow_mod(2,n*(m - 1) - ans);
    printf("%lld %lld\n",(fm - fz)%mod,(fm)%mod);
    return 0;
}

马力太弱。。

转载于:https://www.cnblogs.com/akoasm/p/9578452.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值