又联考了一场,感觉自己好菜啊,T2推出了公式但是不会逆元QAQ,难受啊!!!不过都确实是一道逆元的好题撒!...

题目描述:

1508393868670684770.png

样例输入:

样例1:
3 2

样例2:
1 3

样例3:
4 3

样例输出:

样例1:
1 8

样例2:
1 1

样例3:
23 128

提示:

1508393945595358572.png

时间限制:1000ms
空间限制:512MByte

直接上题解看看吧,不过这个题解跟没说一样。。。已经知道的他都说了,不知道的他只字未提QAQ。///。。

 

#pragma GCC optimize(2) 
#include<bits/stdc++.h>
#define ll long long
#define mod 1000003
using namespace std;
ll n,m,fz,fm,ny,cm;

inline ll ksm(ll t,ll ci)
{
    ll ans = 1;
    ll tem = t;
    while(ci)
    {
        if(ci & 1)
        {
            ans *= tem;
            ans %= mod;
        }
        tem *= tem;
        tem %= mod;
        ci >>= 1;
    }
    return ans;
}

int main(){
    scanf("%lld%lld",&n,&m);
        
    ny = ksm(2 , mod-2);
    cm = ksm(2 , n);
    
    if(m > mod)
    {
        ll num=n,ans;
        for (ll i=2; i<=(m-1); i <<= 1)
            num += (m - 1) / i;
        ans = ksm(ksm(2 , n) , m) * ksm(ny , num) % mod;
        printf("%lld %lld",ans,ans);
        return 0;
    }
    if(n <= log2(m))
    {
        printf("1 1");
        return 0;
    }
    fz = 1;
    ll cnt = 0;
    for(ll i=1;i<=m-1;++i)
    {
        ll temp = i;
        ll ce = (cm - i) % mod;
        while(!(temp & 1))
        {
            cnt++;
            temp >>= 1;
            ce = ce * ny % mod;
        }
        fz = fz * ce % mod;
    }
    fm = ksm(cm , m - 1) % mod * ksm(ny , cnt) % mod;
    fz = (fm - fz + mod) % mod;
    printf("%lld %lld",fz,fm);
}

 

转载于:https://www.cnblogs.com/kczno1fans/p/7713995.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值