[ZJOI 2018]历史

本文介绍了一种使用LCT(Lazy-Counting Tree)数据结构优化树上操作的方法,针对给定的树和节点访问次数,求解最大链切换问题。通过详细解释LCT的实现原理和操作流程,包括旋转、摊还、更新等关键步骤,以及如何维护树的平衡和节点信息,实现了高效的树链切换计算。
摘要由CSDN通过智能技术生成

题意:给定一棵树和点的\(Access\)次数,求切换链的最大值。

考虑修改时实边与虚边的贡献,用\(LCT\)维护此树。

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2000010;
const int INF = 0x7fffffff;
#define int long long
inline int read()
{
    int q=0,f=1;char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-') f=-1;ch=getchar();
    }
    while(isdigit(ch)){
        q=q*10+ch-'0';ch=getchar();
    }
    return q*f;
}
int head[maxn];
int cnt;
struct edge
{
    int nxt;
    int to;
}e[maxn<<1];
inline void add(int u,int v){
    e[++cnt].to = v;
    e[cnt].nxt = head[u];
    head[u] = cnt;
    return;
}

int ans;

struct LCT{
    int ch[maxn][2];
    int fa[maxn];
    int stack[maxn];
    int val[maxn];
    int sum[maxn];
    int isum[maxn];
    inline bool isroot(int x){
        return ch[fa[x]][0] != x && ch[fa[x]][1] != x;
    }
    inline void push_up(int now){
        sum[now] = val[now] + sum[ch[now][0]]+sum[ch[now][1]]+isum[now];
    }
    inline void rotate(int x){
        int f=fa[x];
        int ff = fa[f];
        int y = (ch[f][0] == x);
        bool flag = isroot(f);
        fa[x] = ff;
        fa[f] = x;
        fa[ch[x][y]] = f;
        if(!flag) ch[ff][ch[ff][1]==f] = x;
        ch[f][!y] = ch[x][y];
        ch[x][y] = f;
        push_up(f);
    }
    inline void splay(int x){
        while(!isroot(x)){
            int f = fa[x];
            if(!isroot(f)){
                if((ch[fa[f]][0] == f)^(ch[f][0] == x)) rotate(x);
                else rotate(f);
            }
            rotate(x);
        }
        push_up(x);
    }
    inline void access(int x,int v,int nt){
        for(;x;nt = x,x = fa[x]){
            splay(x);
            int res = sum[ch[x][1]] + val[x] + isum[x];
            if(ch[x][1]){
                ans -=((res-sum[ch[x][1]]) << 1);
            }
            else if(res + 1 <= val[x] * 2){
                ans -= 2*(res - val[x]);
            }
            else ans -= (res - 1);
            sum[x] += v;
            isum[x] += v;
            res += v;
            if(res+1 > sum[ch[x][1]]*2){
                isum[x] += sum[ch[x][1]];
                ch[x][1] = 0;
            }
            if(res + 1<= sum[nt]*2){
                ch[x][1] = nt;
                isum[x] -= sum[ch[x][1]];
            }
            if(ch[x][1]){
                ans += 2*(res - sum[ch[x][1]]);
            }
            else if(res + 1 <= val[x]*2){
                ans += 2*(res - val[x]);
            }
            else ans += (res - 1);
        }
    }
    inline void update(int x,int f){
        splay(x);
        int res = sum[ch[x][1]] + val[x] + isum[x];
        if(ch[x][1]) ans -= 2*(res - sum[ch[x][1]]);
        else if(res + 1 <= val[x] * 2){
            ans -= 2*(res - val[x]);
        }
        else ans -= (res - 1);
        val[x] += f;
        sum[x] += f;
        res += f;
        if(res + 1 > sum[ch[x][1]] * 2){
            isum[x] += sum[ch[x][1]];
            ch[x][1] = 0;
        }
        if(ch[x][1]){
            ans += 2*(res - sum[ch[x][1]]);
        }
        else if(res + 1 <= val[x] * 2){
            ans += (res - val[x]) * 2;
        }
        else ans += (res - 1);
        access(fa[x],f,x);
    }
    inline void dfs(int x,int f){
        fa[x] = f;
        sum[x] = val[x];
        int maxm = val[x];
        int i;
        int tmp = x;
        for(int i = head[x];i;i=e[i].nxt){
            int y = e[i].to;
            if(y == f) continue;
            dfs(y,x);
            sum[x] += sum[y];
            if(sum[y] > maxm){
                tmp = y;
                maxm = sum[y];
            }
        }
        ans += min(sum[x]-1,2*(sum[x]-maxm));
        if(tmp != x && sum[x] + 1 <= maxm * 2) ch[x][1] = tmp;
        isum[x] = sum[x] - val[x] - sum[ch[x][1]];
    }
    inline void ins(){
        dfs(1,0);
    }
}lct;

signed main()
{
    int n = read(),m=read();
    for(int i = 1;i <= n; ++i){
        lct.val[i] = read();
    }
    for(int i = 1;i < n; ++i){
        int u=read(),v=read();
        add(u,v);
        add(v,u);
    }
    lct.ins();
    cout<<ans<<endl;
    for(int i = 1;i <=m; ++i){
        int x = read(),v = read();
        lct.update(x,v);
        cout<<ans<<endl;    
    }
    return 0;
    
}

转载于:https://www.cnblogs.com/akoasm/p/9419221.html

zjoi2019是指第八届浙江省信息学奥林匹克竞赛(Zhejiang Olympiad in Informatics, zjoi),是浙江省级的信息学竞赛活动。这项竞赛旨在发掘和培养浙江省优秀的信息学人才,提高学生在计算机科学和算法设计等方面的能力。zjoi2019分为两个阶段,分别是省赛和决赛。 省赛是选拔赛阶段,所有报名参赛的学生都可以参加。在省赛中,学生将进行一系列的算法编程测试,测试他们在解决实际问题过程中的编程能力、算法设计思维和团队合作能力。省赛中表现优秀的选手将有机会晋级到决赛。 决赛是省选的最终阶段,在决赛中,选手将经历更加复杂和挑战性的编程测试。他们将面对更高难度的算法问题和实际应用问题,需要发挥出自己的创造力和思维能力,迅速解决问题。决赛中表现出色的选手将有机会代表浙江省参加全国性的信息学奥林匹克竞赛。 通过参加zjoi2019浙江省选,学生们将接触到高水平的算法竞赛,提升自己的编程和算法设计能力。同时,他们还能与其他对信息学感兴趣的同学们进行交流和学习,拓宽自己的视野,培养团队合作和竞赛意识。此外,脱颖而出的选手还有机会获得奖项和奖学金等荣誉,为自己的学术和职业道路打下坚实的基础。 总之,zjoi2019浙江省选是对浙江省信息学人才的全面选拔和培养,为学生们提供了一个展示自己技能和才华的舞台。这对于提高学生们的算法设计和编程能力、培养他们的团队合作精神和创新能力具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值