[POJ 3662] Telephone Lines

在无向图内求出一条1到n的路径,使得路径上第\(k + 1\)大的边权尽量小。

考虑二分答案,因为价格满足单调性,如果当前价格满足要求,那么之后的也都满足要求。

二分一个值,通过\(spfa\)去求出1到n的最短路,不过边权当大于二分值就记成1,小于记成-1,看到第n个点最短路是否在k之内即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#define ll long long
const int maxn = 200010;
int cnt;
int head[maxn];
using namespace std;
struct edge {
    int to;
    int nxt;
    int w;
}e[maxn << 1];

inline void add(int u,int v,int w) {
    e[++cnt].to = v;
    e[cnt].nxt = head[u];
    head[u] = cnt;
    e[cnt].w = w;
}

inline void Add(int u,int v,int w) {
    add(u,v,w);
    add(v,u,w);
}
queue<int>q;
int dis[maxn];
int n,m,k;
bool vis[maxn];
inline bool spfa(ll x) {
    while(!q.empty()) q.pop();
    memset(dis,0x3f,sizeof(dis));
    memset(vis,0,sizeof(vis));
    dis[1] = 0;
    vis[1] = 1;
    q.push(1);
    while(!q.empty()) {
        int u = q.front();
        q.pop();
        vis[u] = 0;
        for(int i = head[u];i;i=e[i].nxt) {
            int y = e[i].to;
            if(dis[y] > dis[u] + (e[i].w > x ? 1 : 0)) {
                dis[y] = dis[u] + (e[i].w > x ? 1 : 0);
                if(!vis[y]) {
                    q.push(y);
                    vis[y] = 1;
                }
            }
        }
    }
    return dis[n] <= k ? 1 : 0;
}
ll r;
ll l;
ll ans = -123;
int main () {
    scanf("%d %d %d",&n,&m,&k);
    for(int i = 1;i <= m; ++i) {
        int x,y,z;
        scanf("%d %d %d",&x,&y,&z);
        Add(x,y,z);
        r += z;
    }
    l=0;
    while(l <= r) {
        ll mid = (l + r) >> 1;
        if(spfa(mid)) {
            r = mid - 1;
            ans = mid;
        }
        else l = mid + 1;
    }
    if(ans == -123) puts("-1");
    else printf("%lld\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/akoasm/p/9668872.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值