在无向图内求出一条1到n的路径,使得路径上第\(k + 1\)大的边权尽量小。
考虑二分答案,因为价格满足单调性,如果当前价格满足要求,那么之后的也都满足要求。
二分一个值,通过\(spfa\)去求出1到n的最短路,不过边权当大于二分值就记成1,小于记成-1,看到第n个点最短路是否在k之内即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#define ll long long
const int maxn = 200010;
int cnt;
int head[maxn];
using namespace std;
struct edge {
int to;
int nxt;
int w;
}e[maxn << 1];
inline void add(int u,int v,int w) {
e[++cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt;
e[cnt].w = w;
}
inline void Add(int u,int v,int w) {
add(u,v,w);
add(v,u,w);
}
queue<int>q;
int dis[maxn];
int n,m,k;
bool vis[maxn];
inline bool spfa(ll x) {
while(!q.empty()) q.pop();
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[1] = 0;
vis[1] = 1;
q.push(1);
while(!q.empty()) {
int u = q.front();
q.pop();
vis[u] = 0;
for(int i = head[u];i;i=e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[u] + (e[i].w > x ? 1 : 0)) {
dis[y] = dis[u] + (e[i].w > x ? 1 : 0);
if(!vis[y]) {
q.push(y);
vis[y] = 1;
}
}
}
}
return dis[n] <= k ? 1 : 0;
}
ll r;
ll l;
ll ans = -123;
int main () {
scanf("%d %d %d",&n,&m,&k);
for(int i = 1;i <= m; ++i) {
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
Add(x,y,z);
r += z;
}
l=0;
while(l <= r) {
ll mid = (l + r) >> 1;
if(spfa(mid)) {
r = mid - 1;
ans = mid;
}
else l = mid + 1;
}
if(ans == -123) puts("-1");
else printf("%lld\n",ans);
return 0;
}