- 博客(265)
- 收藏
- 关注
原创 docker-compose 启动多个容器 为容器设置自定义网络 互相ping
docker-compose启动多个容器 yml文件配置自定义网络
2022-06-30 11:04:20 3456
原创 dpdk 多队列配置
dpdk中多队列的配置,其实就是将收到的数据包通过一些计算然后分配到不同的网卡接收队列中,达到负载分流的效果。在dpdk中,可以通过一些简单的配置,开启RSS(微软提出的一种负载分流方法)。后面就是对这个配置信息的一些内容进行修改 然后用修改过的配置信息去配置网卡然后为每个核分配一个队列这个写的有点潦草,建议重新写一个然后为每个核分配收发包任务问题:配置完成后,每次收发包都打印是哪个核收发包,发现,只有主核的队列不停的接收数据和发送数据,其余核心也在进行工作,但是不参与收发包。是vmware网卡
2022-06-20 17:16:00 1820 2
原创 ubuntu安装docker nginx & mysql创建远程登录用户
ubuntu 安装docker 拉取mysql镜像、安装nginx配置nginx等
2022-06-02 10:02:09 293
原创 ubuntu22.04 虚拟机 双网卡配置 桥接
1.添加一个新网卡网卡类型选择桥接![在这里插入图片描述](https://img-blog.csdnimg.cn/7b712597218a4081ac86f4bc8fa9f0f9.pngwindows端win+R ipconfig2.修改虚拟机网络配置输入命令ip a记录这里的ip地址修改/etc/netplan/00-installer-config.yamlsudo vim /etc/netplan/00-installer-config.yaml修改为以下模样ne
2022-05-26 18:22:03 6985
原创 牛客挑战赛59 A
小木桩之间是相互独立的,即在大木桩之间插入的每一个小木桩对其他小木桩没有影响,因为当有一个小木桩插入完成后,再插入一个新的小木桩不会影响前面的小木桩对答案的贡献。对于每一个小木桩,设它安插的位置前面有 xxx 个大木桩,则其后有 a−xa - xa−x 个大木桩,则这个小木桩对答案的贡献为 x×(a−x)−xx \times (a - x) - xx×(a−x)−x ,它取最大值的时候 xmax=⌊a2⌋x_{max} =\lfloor \frac{a}{2} \rfloorxmax=⌊2a⌋ ,因.
2022-04-16 01:32:42 502
原创 英文作文 思维题
题目链接想到了双指针的写法,看了题解之后感觉题解中的算法太妙了,记录一下需要的是 i<ji < ji<j 且 s[i]=s[j]s[ i ] = s[ j ]s[i]=s[j] 且 iii 和 jjj 之间的间隔不超过 kkk ( j−i−1j - i - 1j−i−1 ≤\leq≤ kkk )等价于 s[i]=s[j]s[ i ] = s[ j ]s[i]=s[j] 且 j−1j - 1j−1 ≥\ge≥ i ≥\ge≥ j−k−1j - k - 1j−k−1枚举 jjjm
2022-04-11 00:24:48 186
原创 牛牛的数字集合
大致猜一下就知道是连乘积,但是依然还是要证明一下的。直接输入的时候连乘取模就可以了#include <iostream>#include <algorithm>using namespace std;typedef long long ll;const double pi = 3.141592653589;const int mod = 1e9 + 7;const int N = 1e6 + 7;int n;int a[N];int main(){ fre.
2022-04-08 23:12:20 378
原创 mybatis-plus整合
mybatis整合mybatisplus1、导入依赖<dependencies><!-- mybatis-plus--> <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus</artifactId> <version>3
2022-01-26 10:22:15 1150
原创 mybatis整合mybatis-plus 问题
java.sql.SQLSyntaxErrorException: Unknown column ‘pass_word’ in ‘field list’这是我的实体表,userName这样的字段,mybatis-plus插件会将其对应到数据库种的user_name列package cn.itcast.mp.simple.pojo;import com.baomidou.mybatisplus.annotation.TableName;import lombok.AllArgsConstructor;
2022-01-25 20:07:06 208
原创 web应用程序似乎启动了一个名为[mysql-cj-abandoned-connection-cleanup]的线程,但未停止,可能会造成内存泄漏...
解决方法:设置监听器,在服务器注销的时候运行这句话就不会有问题了。AbandonedConnectionCleanupThread.uncheckedShutdown();新建一个监听器,代码如下import com.mysql.cj.jdbc.AbandonedConnectionCleanupThread;import javax.servlet.*;import javax.servlet.annotation.WebListener;import javax.servlet.http
2022-01-23 21:39:00 3401 1
原创 stat函数获取文件权限和类型
#include <stdio.h>#include <stdlib.h>#include <fcntl.h>#include <unistd.h>#include <string.h>#include <sys/types.h>#include <sys/stat.h>int main(int argc, char **argv){ struct stat sbuf; int r = stat
2021-12-13 08:42:55 583
原创 P2373 yyy2015c01的IDE之Call Stack
模拟就可以了先把所有的空格去掉,然后把大小写统一,然后依次进行处理首先分离出函数名,然后把左括号分离出,然后依次读取每一个参数,以逗号隔开的如果参数中有字符‘a’的’说明这是个char类型,然后在函数参数中写上char没有这个符号就是int类型,写上int处理到最后把右括号加上去放到set中输出集合的大小即可diss:洛谷oj,\r\n?因为读取了一个数字,接下来要读取一行字符,因此需要用getchar ()把换行符读取掉,不会真的有\r\n吧一次getchar()或者cin.get
2021-05-21 13:23:21 156
原创 田忌赛马 贪心
思路:先排序,然后比较,比较分以下情况。田忌最快的马比王的快,可以直接赢下他,此时收益最大田忌最快的马不如王的快,则此时是必输局面,用最慢的马输给他,为后续比较提供更大的胜算田忌最快的马和王的一样快,比较最慢的马分三种情况田忌最慢的马比王的快,则用最慢的马赢王最慢的马,收益最大田忌最慢的马比王的慢,又是一个必输局面,用最慢的马输王最快的马,为后续提供更多胜算田忌最慢的马和王的一样慢,用最慢的马输与王比(可能输也可能平局),为后续比较提供更多胜算然后模拟就好了emm,答案可能是负数,我用了
2021-05-18 16:46:24 239
原创 CCPC 2020 我得重新集结部队
题目链接模拟就行了,比赛的时候一直一直一直一直不过,WA哭了(OAO)大概思路,hphphp对虫子而言就是表示剩余的hphphp,对狂热者而言就是表示是否离场。每有一只虫子进来,标识它是个虫子,记录hphphp。每有一个狂热者加入,标识他是狂热者,记hp>0hp>0hp>0(等于1、2、3…都行),然后遍历已有的虫子,找到最近的一个,然后以该虫子的位置为新位置,以狂热者的攻击范围为半径,扫描在当前攻击范围内的虫子,并使其hp−=3×atkhp-=3\times atkhp−=3×at
2020-11-30 10:46:00 325
原创 CCPC 2020 广告投放
题目链接这是一个DP问题,状态表示:dp[i][j]dp[i][j]dp[i][j]表示,前i−1i-1i−1集都决策完毕后,到达第iii集且当前剩余观看人数为jjj时,最大收益很明显可以得到:① dp[i+1][j/d[i]]=max(dp[i+1][j/d[i]],dp[i][j]+p[i]×j)dp[i+1][j/d[i]]=max(dp[i+1][j/d[i]],dp[i][j]+p[i] \times j)dp[i+1][j/d[i]]=max(dp[i+1][j/d[i]],dp[i][j
2020-11-30 10:35:53 615
原创 Codeforce 1436D
题目链接题目大意:一棵树,树上每个节点保存有一个权值,结点的权值自上而下向下传递,直到叶子节点。传递的过程可以传递给多个子节点其中的一个或者多个。求最后各个叶子节点的权值的最大值最小是多少。(传递后,各子节点权值增加对应的值,父节点权值减去相应的值)思路:从根节点开始考虑,如果以根节点为根的子树上所有的叶子节点最后可以平分,则答案显然是sum(i)/leaves(i)+(sum(i)%leaves(i)?1:0)sum(i)/leaves(i) + (sum(i) \% leaves(i) ?1:0
2020-11-08 18:29:37 154
原创 Sumdiv POJ 1845
传送门题目翻译,不想写不想写求ABA^{B}AB的所有约数之和mod990199019901的值根据约数和定理,ABA^{B}AB的因子和为(1+p1+p12+...+p1c1∗B)∗...∗(1+pm+pm2+...+pmcm∗B(1+{p_{1}}+{p_{1}^{2}}+...+{p_{1}}^{c_{1}*B})*...*(1+{p_{m}}+{p_{m}^{2}}+...+{p_{m}}^{c_{m}*B}(1+p1+p12+...+p1c1∗B)∗...∗(1+pm+pm2+.
2020-10-14 23:19:17 120 1
原创 扩展欧几里得
扩展欧几里得可以求出ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)的一组特解证明:当b=0b=0b=0时,显然有x=1,y=0x=1,y=0x=1,y=0这一组解,但其实yyy并非只能取零,取任何值都可以。若b≠0b\neq 0b=0,因为ax+by=gcd(a,b)=gcd(b,a%b)=bx+(a%b)yax+by=gcd(a, b)=gcd(b, a \%b)=bx+(a \%b)yax+by=gcd(a,b)=gcd(b,a%b)=bx+(a%b)y
2020-09-28 23:59:45 1539
原创 GCD+几何 AcWing201 可见的点
传送门题目需要求的是正方形内的点,每个点到(0,0)(0,0)(0,0)的连线都有或者不存在斜率,这样的斜率不同的有多少个,包括斜率不存在结论:GCD(x,y)=1GCD(x,y)=1GCD(x,y)=1的为满足条件的,除此以外还有斜率为000和斜率不存在的点定义:k(x,y)k(x,y)k(x,y)表示(x,y)(x,y)(x,y)到(0,0)(0,0)(0,0)连线的斜率证明:1·对于任意一个点(x,y)(x,y)(x,y),若GCD(x,.y)≠1GCD(x,.y)\neq 1GCD(x,.
2020-09-19 20:44:15 186 1
原创 余数之和 数论分块
传送门给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7。第一印象肯定是暴力了,但是本题目的数据量太大了,暴力会TLE,因此需要考虑另外的解法。k%i=k−⌊k/i⌋×ik\%i=k-\lfloor k / i \rfloor \times ik%i=k−⌊k/i⌋×i,我们将每个取模运算
2020-09-15 19:38:02 189
原创 整除分块(非得五个字才能发,括号里都是凑字数的)
整出分块用于解决形如∑i=1n⌊n/i⌋\sum_{i=1}^{n} \lfloor n/i \rfloor∑i=1n⌊n/i⌋的问题。l
2020-09-14 19:59:33 159
原创 反素数
反素数的定义参考题目吧:题目链接N以内的最大的反素数具有如下特征:它是N以内约数个数最多的数字中最小的一个。对任意一个比它小的数字,约数个数没有它多,任何一个比它大的数字,约数数量不比它多,所以它就是反素数。最小的连续11个质因子的连乘积大于N的最大值,因此不会是多余10个不同的质因子。231>N2^{31}>N231>N所以指数总和不超过31如果xxx是反素数,xxx的质因子是连续的若干个最小的质数,且指数单调递减。即可以写成:2c1∗3c2∗5c3∗7c4∗11c5∗13c
2020-09-07 13:14:28 355
原创 阶乘分解为算术基本定理的表示形式
一个数字分解为算数基本定理的表示形式可以借助埃氏筛来进行。一个数字的阶乘分解有两种考虑。对阶乘计算中的每一个数字都进行分解,这种想法比较简单直接,但是复杂度较高。求出N以内的所有的质数,设其中一个为P,1到n中含有因子P的个数为N/P向下取整,然后除了这一部分还有一些还有因子P*P,因为刚刚已经计算了一次P,因此此时依然含有因子P(可以理解为把刚刚的因子P都除去了)的有N/(P * P)向下取整个,同理还有P的三次方等等。直到P的M次方大于N了就没有了。因此可以先埃氏筛或者线性筛筛选出N以内的全部素数
2020-09-05 23:16:36 318 1
原创 車的放置 最大流求最大匹配
重点说一下二分图的两个部分,可以明确的是,車所在的一行一列不能再放置了,可以将这个位置,看作是車所在的行和列之间的连线,由此我们将行与列分开,可以看出,行的集合内部,没有连线,即没有哪一个車同时对多行起作用,同理,列也是如此,也就是说我们得到了一张二分图。如果某一个点不能放置,可以看作这一行和这一列之间没有边连接。然后根据这个建图,求最大匹配就是答案。#include <bits/stdc++.h>using namespace std;#define mem(a, b) memset(a
2020-08-19 21:51:58 107
原创 棋盘覆盖 最大流求解最大匹配
一个二分图最大匹配的问题,依然是分成两部分,数字坐标和为奇数的为一部分,和为偶数的为另一部分。这两部分各自内部没有连线,可以作为二分图。二分图最大匹配可以用最大流解决。可以引进一个源点sss,从sss出发向二分图的左部分连线(有向边),把从左部分连向右部分的双向边换成从左连向右边的单向边,然后从二分图的右部分的每个点出发,连向汇点ttt,图中所有边的权值都是1,这样一个图就建好了。然后跑一边~~沙(Sand)盒(Box)~~的Dinic,最大流量就是答案。#include <bits/stdc+
2020-08-19 18:11:04 257
转载 最大流中反向边的作用和意义
流量需要满足三个限制条件:容量限制 f(u,v)≤c(u,v)f(u,v)\leq c(u,v)f(u,v)≤c(u,v)流量守恒 ∑(S,v)ϵE=∑(u,T)ϵE\sum_{(S,v)\epsilon E}=\sum_{(u,T)\epsilon E}∑(S,v)ϵE=∑(u,T)ϵE斜对称 f(x,y)=−f(y,x)f(x,y)=-f(y,x)f(x,y)=−f(y,x)斜对称的性质就决定了最大流中需要存在反向的流量(反向边),蒟蒻如我,不懂这样的反向流量的意义何在,于是查了一下资料
2020-08-09 17:14:12 872
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人