莫比乌斯反演III

"haik, hen wir." -- somebody

概述

莫比乌斯反演通过一些恒等变形使需要高时间复杂度计算的式子变为可快速计算的。
一般来说,将形如\(\sum_{d|n}\)的式子提到前面,形如\(\sum_{i=1}^n\)的式子放到后面,这样后面就可以简化运算。

变换

扩展变换

\(\sum_{i=1}^nf(i)=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(id)\)

抽取变换

\((a,b)=\sum_{d=1}^n[(a,b)=d]d\)

重排变换/交叉变换

\(\lfloor\frac{n}{k}\rfloor=\sum_{i=1}^n[k|i]\)
\(\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor f(i)=\sum_{i=1}^nf(i)\sum_{j=1}^n[i|j]=\sum_{j=1}^n\sum_{i|j}f(i)\)

山东变换

\(d(nm)=\sum_{i|n}\sum_{j|m}[(i,j)=1]\)

重庆变换/双希变换

\(\sum_{d=1}^n\sum_{t=1}^nf(dt)g(d)h(t)=\sum_{D=1}^nf(D)\sum_{d|D}g(d)h(\frac{D}{d})\)

注:该变换一般用于最后一步,然后考虑如何快速处理\(\sum_{d|D}g(d)h(\frac{D}{d})\),如线性筛等。

杜教筛变换

\(\sum_{i=1}^n\sum_{d|i}f(d)g(\frac{i}{d})=\sum_{i=1}^ng(i)\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}f(d)\)

常用结论

K-GCD

\(\sum_{i=1}^n\sum_{j=1}^m[(i,j)=k]=\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{k}\rfloor}[(i,j)=1] = \sum_{d=1}^{min({\lfloor \frac{n}{k}\rfloor},{\lfloor \frac{m}{k}\rfloor})}\mu(d)\lfloor \frac{n}{kd}\rfloor \lfloor\frac{m}{kd}\rfloor\)

复习时更新:注意\([d=(i,j)]\)\([d|(i,j)]\)不同。

转载于:https://www.cnblogs.com/utopia9999/p/9649286.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值