莫比乌斯反演入门

这个算是竞赛中用到的组合数学里最多的知识点,也是比较难理解的,在被将近一个星期的折磨后总算是理解了一些。

其实莫比乌斯反演就只有两个重要的公式,而且用到的最多的也只有一个(其实都差不多),但是需要一些预备知识。

莫比乌斯函数,质数线性筛,整除分块,积性函数以及一些其他的数论知识,下面会将其中一部分重要的算法,


 

目录

1.莫比乌斯函数

2.莫比乌斯函数的线性筛

3.整除分块

4.积性函数和狄利克雷卷积

5.莫比乌斯反演

6.习题演

 


 


1.莫比乌斯函数

莫比乌斯函数没有什么好写的,就是一个需要记住的函数,具体的证明以及内容请参考:百度百科

n=1;

若n无平方因子,即n=p1*p2*p3*p4...*pn(都不同)

others

 

 


 2.莫比乌斯函数的线性筛

其实就是预处理求出莫比乌斯函数,通常还会求出μ函数的前缀和,其实和质数线性筛的差不多。

代码如下(来自B站UestcAcm的视频):

int prime[MAXN], prime_tot;//prime[MAXN]用于保存质数,prime_tot是质数的个数; 
bool prime_tag[MAXN];//标记是否为质数,false表示是质数,true表示合数; 
int mu[MAXN];//保存n的莫比乌斯函数值; 
void pre_calc(int lim){
	mu[1] = 1;
	for (int i = 2; i <= lim; ++i) {
		if(!prime_tag[i]) {
			prime[++prime_tot] = i;
			mu[i] = -1;
			//质数的莫比乌斯函数值必为-1; 
		}
		for (int j = 1; j <= prime_tot; ++j) {
			if(i * prime[j] > lim)break;
			prime_tag[i * prime[j] ] = true;
			//质数的倍数必是合数 
			if(i % prime[j] == 0) {
				//如果 i能被质数整除 说明 i中必有同一个质数因子
				//那么 i*prime[j] 就必有平方因子 
				mu[i * prime[j] ] = 0;
				break;
			}
			else {
				mu[i * prime[j] ] = -mu[i];
			}
		}
	} 
} 

3.整除分块

这个算是一个技巧吧,在莫比乌斯反演里面用的比较多。

通常用来快速解决\sum_{i=1}^{n}\left \lfloor \frac{n}{i} \right \rfloor这类问题,通常我们求解的方法是O(n)的时间复杂度,但是我们可以发现在求解时有一部分的值是一样的。

拿10来举个例子吧,i=1时值为10,i=2时值是5,i=3时值是3,i=4时值是2,i=5时值是2,i=6,7,8,9,10时值是1。

我们会发现在枚举时,会花大部分的时间去求一些重复的值,把这部分时间优化一下是整除分块。

下面引用一部分来自网上大佬的讲解(整除分块)。

首先观察这个式子,找几个特殊值代入
n=5时,sum=5+2+1+1+1
可以发现的是:(这里给的例子并不明显,其实应该找一个大的n来代入才直观,读者可以自行尝试)
对于单一的⌊n/i⌋,某些地方的值是相同的,并且呈块状分布
通过进一步的探求规律与推理以及打表与瞎猜,我们可以惊喜的发现一个规律,这些块状分布的值是有规律的
对于一个块,假设它的起始位置的下标为l,那么可以得到的是,它的结束位置的下标为\left \lfloor \frac{n}{\left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor
如果实在看的有点懵逼,可以继续采用代入特殊值的方法,验证一下上方的规律,用程序表现出来即为

//l为块的左端点,r为块的右端点
r=n/(n/l)

具体代码实现为(要特判为0的情况):

long long ans=0;
int i=1;
while(i<=n){
    j=n/(n/i);
    i=j+1;
    // do something
}

4.积性函数和狄利克雷卷积

积性函数分为完全积性函数和积性函数

积性函数:对于函数f(n),若满足对任意互质的数字a,b,a∗b=n且f(n)=f(a)*f(b),那么称函数f为积性函数。

完全积性函数:对于函数f(n),若满足对任意的数字a,b,a∗b=n且f(n)=f(a)*f(b),那么称函数f为积性函数。

狄利克雷卷积是函数之间的运算

狄利克雷卷积:\left ( f*g \right )\left ( n \right )= \sum_{d|n}^{n} f\left ( d \right )g\left ( \frac{n}{d} \right )

狄利克雷卷积满足很多性质:
交换律:f∗g=g∗f
结合律:(f∗g)∗h=f∗(g∗h)

一些常用的积性函数(来自yyb的博客:莫比乌斯反演):

μ 莫比乌斯函数

这个怎么筛应该都会吧

φ 欧拉函数

怎么筛应该也很明显吧。

d 约数个数

这个怎么筛?
考虑唯一分解定理:
x=\prod pi^{ai}
那么d(x)=\prod \left (ai+1 \right )
记录一下最小质因子的个数
每次就先把原来的除掉,再把+1 后的个数乘上就好啦

σ 约数和

还是唯一分解定理
x=\prod pi^{ai}
σ(x)=\prod \left ( \sum_{j=0}^{ai} pi^{j}\right )
记录一下最小质因子的上面那个式子的和
以及这个因子的ai次幂
每次也是先除掉再乘上新的

ak的k 次幂

把这个东西写进来,只是为了提醒一下
ak这种东西是一个完全积性函数,也是可以丢进去筛的

inv 乘法逆元

没啥,一样的,乘法逆元也是完全积性函数
蛤,我知道可以O(n)递推
只是写一下而已,具体请参考线性筛,积性函数,狄利克雷卷积,常见积性函数的筛法

还有一些比较重要的请参考:UestcAcm的莫比乌斯反演ppt


5.莫比乌斯反演

终于到最后的莫比乌斯反演了,花了一节实验课把预备知识写完,剩下的都是重点了!!!

莫比乌斯反演公式(证明请参考:组合计数和反演):

g\left ( n\right )=\sum_{n|d}^{\infty } f\left ( d \right )

f\left ( n \right )=\sum_{n|d}^{\infty }\mu \left ( \frac{d}{n} \right )g\left ( d \right )

g\left ( n\right )=\sum_{d|n}^{\infty } f\left ( d \right )

f\left ( n \right )=\sum_{d|n}^{\infty }\mu \left ( \frac{n}{d} \right )g\left ( d \right )

理论知识不多,但是用处灰常大!!!!


6.习题演练

知识点讲完了,该讲一下习题了。

首先是BZOJ1101ZAP洛谷P3455

题意:给你a,b,d,让你求出\dpi{120} \bg_white \sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)==d \right ]的值。

算是最经典的莫比乌斯反演题。

设 f(d) 为 \dpi{120} \bg_white \sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)==d \right ]

根据莫比乌斯反演定理,g\left ( n\right )=\sum_{n|d}^{\infty } f\left ( d \right ),故g(n)为gcd(i,j)==d和d的倍数的个数。

g(d)=\sum_{i=1}^{n}\sum_{j=1}^{m}\left [ d|gcd(i,j) \right ]=\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\left [ 1|gcd(i,j) \right ],易知g(d)=\bg_white \fn_cm \left \lfloor \frac{n}{d} \right \rfloor \left \lfloor \frac{m}{d} \right \rfloor

那么我们由莫比乌斯反演可得

f\left ( d \right )=\sum_{d|i}^{\infty }\mu \left ( \frac{i}{d} \right )g\left ( i \right ) =\sum_{d|i}^{\infty }\mu \left ( \frac{i}{d} \right )\left \lfloor \frac{a}{i} \right \rfloor\left \lfloor \frac{b}{i} \right \rfloor = \sum_{i=1}^{min(a,b)/d}\mu \left ( i \right )\left \lfloor \frac{a/d}{i} \right \rfloor\left \lfloor \frac{b/d}{i} \right \rfloor

我们预处理求出μ的前缀和并且用数论分块求就能保证时间复杂度是O(\sqrt{n})

代码如下:

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<bits/stdc++.h>
#define rp(i,s, t) for (i = s; i <= t; i++)
#define RP(i,s, t) for (i = t; i >= s; i--)
#define ll long long
#define ull unsigned long long
using namespace std;
const int manx=1e5+7;
int visited[manx],prime[manx],tot=0;
ll mu[manx];
ll sum[manx];
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
void init(){
	memset(visited,0,sizeof(visited));
	mu[1]=1;
	int i,j;
	rp(i,2,manx-1){
		if(visited[i]==0){
			mu[i]=-1;
			visited[i]=1;
			prime[tot++]=i;
		}
		rp(j,0,tot-1){
			if(prime[j]*i>=manx) break;
			visited[prime[j]*i]=1;
			if(i%prime[j]==0){
				mu[i*prime[j]]=0;
				break;
			}
			else{
				mu[i*prime[j]]=-mu[i];
			}
		}
	}
	rp(i,1,manx-1) sum[i]=sum[i-1]+mu[i];
}
int main(){
	int T;
	T=read();
	init();
	while(T--){
		int a=read(),b=read(),d=read();
		a/=d;
		b/=d;
		if(a>b) swap(a,b);
		int i=1;
		ll ans=0;
		while(i<=a){//数论分块
			int j=min(a/(a/i),b/(b/i));
			ans+=(sum[j]-sum[i-1])*(a/i)*(b/i);
			i=j+1;
		}
		printf("%lld\n",ans);
	} 
	return 0;
}

hdu1695

题意同上。

和上面很类似的一道题,只不过需要处理一下重复的情况(这里把gcd(7,5)和gcd(5,7)看成同一种情况)

不过这个题时间限度很低,因此我们可以直接容斥来求,时间复杂度为O(n)

最后我们去掉重复的情况(即最小部分的和的一半\bg_white \fn_cm \sum_{i=1}^{b}\sum_{j=1}^{b}\mu \left ( i \right )g\left ( i \right )除以2)。

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm> 
#define ll long long 
#define rp(i,s,t) for(i=s;i<=t;i++)
#define Rp(i,s,t) for(i=t;i>=s;i--)
using namespace std;
const int manx=1e5+7;
int mu[manx],prime[manx],visited[manx];
ll g[manx];
int tot=0;
void init(){//预处理求出μ函数
	tot=0;
	memset(visited,0,sizeof(visited));
	mu[1]=1;
	int i,j;
	rp(i,2,manx){
		if(!visited[i]){
			prime[tot++]=i;
			mu[i]=-1;
			visited[i]=1;
		}
		rp(j,0,tot-1){
			if(prime[j]*i>manx) break;
			visited[prime[j]*i]=1;
			if(i%prime[j]==0){
				mu[i*prime[j]]=0;
				break;
			}
			else{
				mu[i*prime[j]]=-mu[i];
			}
		}
	}
}
int main(){
	int T;
	int a,b,c,d,k;
	scanf("%d",&T);
	init();
	int kas=0;
	while(T--){
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
		if(k==0){//特判等于0的情况
			printf("Case %d: 0\n",++kas);
			continue;
		}
		if(b>d) swap(b,d);
		b/=k;
		d/=k;
		ll ans=0,res=0;
		int i;
		rp(i,1,b)	g[i]=1ll*(b/i)*(d/i);
		rp(i,1,b)	ans+=1ll*mu[i]*g[i];
		rp(i,1,b)	res+=1ll*mu[i]*(b/i)*(b/i);//算出公共部分并去掉 
		printf("Case %d: %lld\n",++kas,ans-res/2);//利用容斥得到答案
	}
	return 0;
}

BZOJ2301

\bg_white \fn_cm \dpi{120} \bg_white \sum_{i=a}^{b}\sum_{j=c}^{d}\left [ gcd(i,j)==k \right ]的值。

容斥定理的应用,不难想到我们可以转换成求\left [ b,d \right ]-\left [ b,c-1 \right ]-\left [ a-1,d \right ]+\left [ a-1,c-1 \right ]的值。

至于为什么呢?我们可以先进行一次转换:\sum_{j=c}^{d}=\sum_{j=1}^{d}-\sum_{j=1}^{c-1},之后代入原式。

带入后式子变成了\bg_white \fn_cm \dpi{120} \bg_white \sum_{i=a}^{b}\left ( \sum_{j=1}^{d}\left [ gcd(i,j)==k \right ]-\sum_{j=1}^{c-1}\left [ gcd(i,j)==k \right ]\right )

整理可得:\bg_white \fn_cm \dpi{120} \bg_white \sum_{i=a}^{b}\left\sum_{j=1}^{d}\left [ gcd(i,j)==k \right ]-\sum_{i=a}^{b}\sum_{j=1}^{c-1}\left [ gcd(i,j)==k \right ]

再进行一次变换:\sum_{i=a}^{b}=\sum_{i=1}^{b}-\sum_{i=1}^{a-1},然后代入上式可得:

\bg_white \fn_cm \dpi{120} \bg_white \left (\sum_{i=1}^{b}-\sum_{i=1}^{a-1} \right )\left\sum_{j=1}^{d}\left [ gcd(i,j)==k \right ]- \left (\sum_{i=1}^{b}-\sum_{i=1}^{a-1} \right )\sum_{j=1}^{c-1}\left [ gcd(i,j)==k \right ]

整理可得:

\bg_white \fn_cm \dpi{120} \bg_white \left\sum_{i=1}^{b}\left\sum_{j=1}^{d}\left [ gcd(i,j)==k \right ]-\sum_{i=1}^{a-1} \left\sum_{j=1}^{d}\left [ gcd(i,j)==k \right ]- \left\sum_{i=1}^{b}\sum_{j=1}^{c-1}\left [ gcd(i,j)==k \right ]+\sum_{i=1}^{a-1} \sum_{j=1}^{c-1}\left [ gcd(i,j)==k \right ]

剩下的就和上一个题的差不多了。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<bits/stdc++.h>
#define rp(i,s, t) for (i = s; i <= t; i++)
#define RP(i,s, t) for (i = t; i >= s; i--)
#define ll long long
#define ull unsigned long long
using namespace std;
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
inline void write(int x)
{
    char F[200];
    int tmp=x>0?x:-x ;
    if(x<0)putchar('-') ;
    int cnt=0 ;
       while(tmp>0)
       {
           F[cnt++]=tmp%10+'0';
           tmp/=10;
       }
       while(cnt>0)putchar(F[--cnt]) ;
}
const int N=1e5+7;
int tot,visited[N],prime[N],mu[N];
ll sum[N];
int k;
void init(int n)//预处理求出莫比乌斯函数的前缀和
{
    tot=0;
    memset(visited,0,sizeof visited);
    mu[1]=1;
    int i,j;
    rp(i,2,n){
        if(!visited[i]){
            visited[i]=1;
            prime[tot++]=i;
            mu[i]=-1;
        }
        rp(j,0,tot-1){
            if(i*prime[j]>n) break;
            visited[i*prime[j]]=1;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
    rp(i,1,n)    sum[i]=sum[i-1]+mu[i];
}
ll solve(int x,int y){
    if(x>y) swap(x,y);
    x/=k,y/=k;
    int i=1;
    ll ans=0;
    while(i<=x){//数论分块
        int j=min(x/(x/i),y/(y/i));
        ans+=(sum[j]-sum[i-1])*1ll*(x/i)*(y/i);
        i=j+1;
    }
    return ans;
}
int main(){
	int T=read();
    init(100000);
    while(T--)
    {
        int a=read(),b=read(),c=read(),d=read();
        k=read();
        ll ans=solve(b,d)-solve(b,c-1)-solve(a-1,d)+solve(a-1,c-1);//容斥定理
        printf("%lld\n",ans);
    }
	return 0;
}

BZOJ2820&&luoguP2257

\dpi{100} \bg_white \fn_cm \dpi{120} \bg_white \sum_{p\in prime}^{min(a,b)}\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)==p \right ]的值。

这个题如果我们直接求出所有质数,然后在枚举的话肯定会超时,所有我们想能不能再化简一下原来的公式。

调用前面的式子可以进行变换得到:

\bg_white \fn_cm \dpi{100} \bg_white \fn_cm \dpi{120} \bg_white \sum_{p\in prime}^{min(a,b)} \sum_{i=1}^{min(a,b)/p}\mu \left ( i \right )\left \lfloor \frac{a/p}{i} \right \rfloor\left \lfloor \frac{b/p}{i} \right \rfloor=\sum_{p\in prime}^{min(a,b)} \sum_{i=1}^{min(a,b)/p}\mu \left ( i \right )\left \lfloor \frac{a}{pi} \right \rfloor\left \lfloor \frac{b}{pi} \right \rfloor

那么令T=pi,代入上式可得:

\bg_white \fn_cm \dpi{100} ans=\sum_{T=1}^{min(a,b)}\sum_{p|T,p\in prime}^{min(a,b)}\mu \left ( \frac{T}{p} \right )\left \lfloor \frac{a}{T}\right \rfloor \left \lfloor \frac{b}{T}\right \rfloor=\sum_{T=1}^{min(a,b)}\left \lfloor \frac{a}{T}\right \rfloor \left \lfloor \frac{b}{T}\right \rfloor\sum_{p|T,p\in prime}^{min(a,b)}\mu \left ( \frac{T}{p} \right )

这一步我们可以理解为从枚举p变成了枚举p的倍数从而间接实现枚举p(当且仅当p整除T时,对T才会有贡献)。

下一步是因为后面的T对于枚举p的求和时是常量,所以可以提出了。

然后我们可以先预处理求出后面的前缀和,即\sum_{p|T,p\in prime}^{min(a,b)}\mu \left ( \frac{T}{p} \right ),之后再分块求解。

我们可以在筛出质数后,求出\mu \left ( \frac{T}{p} \right )的前缀和,然后就可以用O(T\sqrt{n})的时间复杂度求出答案。

#include<iostream>
#include<algorithm>
#include<bits/stdc++.h>
#include<cmath>
#include<cstring>
#define rp(i,s, t) for (i = s; i <= t; i++)
#define RP(i,s, t) for (i = t; i >= s; i--)
#define ll long long
#define ull unsigned long long
using namespace std;
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
inline void write(int x)
{
    char F[200];
    int tmp=x>0?x:-x ;
    if(x<0)putchar('-') ;
    int cnt=0 ;
       while(tmp>0)
       {
           F[cnt++]=tmp%10+'0';
           tmp/=10;
       }
       while(cnt>0)putchar(F[--cnt]) ;
}
const int N=1e7+5;
int mu[N],prime[N],tot,visited[N],temp[N];
ll sum[N];
void init(int n)
{
    mu[1]=1;
    int i,j;
    rp(i,2,n){
        if(!visited[i]){
            prime[tot++]=i;
            visited[i]=1;
            mu[i]=-1;
        }
        rp(j,0,tot-1){
            if(i*prime[j]>n) break;
            visited[i*prime[j]]=1;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
    rp(j,0,tot-1){
        rp(i,1,n){
            if(i*prime[j]>n) break;
            temp[i*prime[j]]+=mu[i];//先求出所有的μ(T/t)
        }
    }
    rp(i,1,n)//预处理求出前缀和
        sum[i]=sum[i-1]+1ll*temp[i];
}
int main(){
	int T=read();
    init(10000000);
    while(T--){
        int n=read(),m=read();
        if(n>m) swap(n,m);
        int i=1,j;
        ll ans=0;
        while(i<=n){
            int j=min(n/(n/i),m/(m/i));
            ans+=1ll*(sum[j]-sum[i-1])*(n/i)*(m/i);
            i=j+1;
        }
        cout<<ans<<endl;
    }
	return 0;
}

BZOJ2818

和上面的题一样,不过我们需要在求出μ的时候同时处理前缀和(相比上面的少了个循环,即常数变小了)。

如果和上面代码一样会T,有点卡常。

#include <iostream>
#include <algorithm>
#include <bits/stdc++.h>
#include <cmath>
#include <cstring>
#define rp(i, s, t) for (i = s; i <= t; i++)
#define RP(i, s, t) for (i = t; i >= s; i--)
#define ll long long
#define ull unsigned long long
using namespace std;
inline int read()
{
    int x = 0, t = 1;
    char ch = getchar();
    while ((ch < '0' || ch > '9') && ch != '-')
        ch = getchar();
    if (ch == '-')
        t = -1, ch = getchar();
    while (ch <= '9' && ch >= '0')
        x = x * 10 + ch - 48, ch = getchar();
    return x * t;
}
inline void write(int x)
{
    char F[200];
    int tmp = x > 0 ? x : -x;
    if (x < 0)
        putchar('-');
    int cnt = 0;
    while (tmp > 0)
    {
        F[cnt++] = tmp % 10 + '0';
        tmp /= 10;
    }
    while (cnt > 0)
        putchar(F[--cnt]);
}
const int N = 1e7 + 5;
int mu[N], prime[N],tot,visited[N], temp[N];
ll sum[N];
void init(int n)
{
    int i,j;
    memset(visited,0,sizeof(visited));
    tot = 0;
    mu[1] = 1;
    temp[1] = sum[1] = 0;
    rp(i,2,n)
    {
        if (!visited[i])
        {
            prime[tot++] = i;
            mu[i] = -1;
            temp[i] = mu[1];
        }
        rp(j,0,tot-1){
            if(i*prime[j]>n) break;
            visited[i * prime[j]] = 1;
            if (i%prime[j]==0){
                mu[i * prime[j]] = 0;
                temp[i * prime[j]] = mu[i];
                break;
            }
            else{
                mu[i * prime[j]] = -mu[i];
                temp[i * prime[j]] = mu[prime[j]] * temp[i] + mu[i];
            }
        }
    }
    //注意这里会卡常,所以在线性筛的时候处理就行了。
    // rp(j,0,tot-1){
    //     rp(i,1,n){
    //         if(i*prime[j]>n) break;
    //         temp[i*prime[j]]+=mu[i];//先求出所有的μ(T/t)
    //     }
    // }
    rp(i,1,n) sum[i]=sum[i-1]+temp[i];
}
int main()
{
    init(10000000);
    int n = read();
    int i = 1, j;
    ll ans = 0;
    while (i <= n)
    {
        int j = n / (n / i);
        ans += 1ll * (sum[j] - sum[i - 1]) * (n / i) * (n / i);
        i = j + 1;
    }
    printf("%lld\n", ans);
    return 0;
}
//27493351185725

其实光会莫比乌斯反演还完全不够,往往要用到min_25筛和杜教筛进行进一步的优化,但是这些还不是很会,等这几天学会了再来补这些算法。

通常这类题型都是:莫比乌斯反演推式子,杜教筛(或者min_25筛)求前缀和。一点也不浪费呀!!!所以说要学就只能都学。

 

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值