《Data-Drive Science and Engineering》—— Chapter2中文(1)——序言+傅里叶级数

《Data-Drive Science and Engineering》—— Chapter 2 中文译文(1)——序言+傅里叶级数



前言

最近在学习FFT(快速傅里叶变换)的有关内容,然后偶然间发现了这一本来自美国华盛顿大学的硬核书。于是目前简单的翻译解读了一下这本书中我最需要了解的第二部分。

这一本书的主要内容是将机器学习、工程数学和数学物理等理论知识结合起来,并将基于理论的数据驱动方法运用于当前各种的的复杂系统当中,比如湍流、大脑、气候、流行病学、金融、机器人和自主。全书有一个专门的资源网站,包含电子版、案例研究、补充练习、数据和开源代码,可以说是非常强而且资源全面的一本书。

链接放在这里:
DATA DRIVEN SCIENCE & ENGINEERING


Chapter 2 机器学习和数据分析

数学物理和工程数学的一个中心问题涉及将方程转换为一个坐标系,其中表达式简化、解耦,并易于计算和分析。这是贯穿本书的共同主题,在各种各样的领域,包括数据分析(例如,SVD)、动力系统(例如,光谱分解为特征值和特征向量)和控制(例如,通过可控性和可观测性定义坐标系)。也许在19世纪早期,最早是由j-b约瑟夫·傅里叶将最普遍的、且无所不在的坐标变换引入热的理论研究中。傅里叶在热研究中引入了增加频率的正弦和余弦函数为解函数空间提供正交基的概念。实际上,正弦和余弦的傅里叶变换基作为热方程的特征函数,特定的频率作为特征值,由几何形状决定,振幅由边界条件决定。

傅里叶的开创性工作为希尔伯特空间(Hilbert spaces)、算子理论(operator theory)、近似理论(approximation theory)以及随后的解析和计算数学革命提供了数学基础。快进两百年,快速傅里叶变换已经成为计算数学的基石,使实时图像和音频压缩、全球通信网络、现代设备和硬件、数值物理和工程,以及先进的数据分析。简单地说,快速傅里叶变换在塑造现代世界方面比迄今为止的任何其他算法都具有更重要和深远的作用。

随着越来越复杂的问题、数据集和计算几何图形,简单的傅里叶正弦和余弦基已经让位给定制的基,如数据驱动的支持向量分解。事实上,支持向量差基可以作为傅里叶基的直接模拟来求解具有复杂几何的偏微分方程,这将在后面讨论。此外,相关的函数,称为小波,已被开发为先进的信号处理和压缩工作。在本章中,我们将演示傅里叶变换和小波变换的许多用途。


2.1 傅里叶级数和傅里叶变换(Fourier series and Fourier transforms)

在描述傅里叶变换在数据向量上的计算实现之前,我们介绍了为连续函数定义的解析傅里叶级数傅里叶变换。自然,离散和连续公式应该在无限精细分辨率的数据极限下匹配。傅里叶级数和变换与无限维函数空间或希尔伯特空间的几何结构密切相关,它推广了向量空间的概念,以包含具有无限多个自由度的函数。因此,我们从介绍函数空间开始。


Inner products of functions and vectors(函数和向量的内积)

在这一节,我们将利用函数的内积和函数的范数。特别的,我们将使用被定义的公共的Hermitian内积函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) ,对任意 x x x在定义域上 x ∈ [ a , b ] x\in [a,b] x[a,b]:

⟨ f ( x ) , g ( x ) ⟩ = ∫ a b f ( x ) g ˉ ( x ) d x \langle f(x), g(x)\rangle=\int_{a}^{b} f(x) \bar{g}(x) d x f(x),g(x)=abf(x)gˉ(x)dx
其中, g g g 为复共轭


函数的内积一开始可能看起来很奇怪或没有动机,但当我们考虑数据向量的内积时,这个定义就变得清晰了。特别地,如果我们将函数f(x)和g(x)离散为数据的向量,如图2.1所示,随着采样分辨率的增加,我们希望向量内积收敛于函数内积。数据向量 f = [ f 1   f 2   . . .   f n ] T f=[f_1 \ f_2 \ ... \ f_n]^T f=[f1 f2 ... fn]T g = [ g 1   g 2   . . .   g n ] T g=[g_1 \ g_2 \ ... \ g_n]^T g=[g1 g2 ... gn]T的内积被定义成如下的形式:
⟨ f , g ⟩ = g ∗ f = ∑ k = 1 n f k g ˉ k = ∑ k = 1 n f ( x k ) g ˉ ( x k ) \langle\mathbf{f}, \mathbf{g}\rangle=\mathbf{g}^{*} \mathbf{f}=\sum_{k=1}^{n} f_{k} \bar{g}_{k}=\sum_{k=1}^{n} f\left(x_{k}\right) \bar{g}\left(x_{k}\right) f,g=gf=k=1nfkgˉk=k=1nf(xk)gˉ(xk)

随着数据点的增加,内积的大小会增加。比如:n增加。因此,我们可以使用这样的方法去进行标准归一化: ∆ x = ( b − a ) / ( n − 1 ) ∆x = (b − a)/(n − 1) x=(ba)/(n1)

b − a n − 1 ⟨ f , g ⟩ = ∑ k = 1 n f ( x k ) g ˉ ( x k ) Δ x \frac{b-a}{n-1}\langle\mathbf{f}, \mathbf{g}\rangle=\sum_{k=1}^{n} f\left(x_{k}\right) \bar{g}\left(x_{k}\right) \Delta x n1baf,g=k=1nf(xk)gˉ(xk)Δx

上式也是连续函数内积的黎曼近似。当我们的 n → ∞ ( ∆ x → 0 ) n → ∞( ∆x → 0) n(x0),向量的内积收敛于(2.1)中的函数内积。

​这个内积也引出了函数的范数,即
∥ f ∥ 2 = ( ⟨ f , f ⟩ ) 1 / 2 = ⟨ f , f ⟩ = ( ∫ a b f ( x ) f ˉ ( x ) d x ) 1 / 2 \|f\|_{2}=(\langle f, f\rangle)^{1 / 2}=\sqrt{\langle f, f\rangle}=\left(\int_{a}^{b} f(x) \bar{f}(x) d x\right)^{1 / 2} f2=(f,f)1/2=f,f =(abf(x)fˉ(x)dx)1/2

所有具有有界范数的函数的集合定义了平方可积函数的集合,用 L 2 ( [ a , b ] ) L^2([a,b]) L2([ab])表示;这也被称为勒贝格可积函数的集合。间隔 [ a , b ] [a,b] [ab]也可以选择为无限(例如, ( − ∞ , ∞ ) ) (−∞,∞)) ())、半无限(例如, [ a , ∞ ) ) [a,∞)) [a))或周期(例如, [ − π , π ) ) [−π,π)) [ππ)) L 2 ( [ 1 , ∞ ) ) L2([1,∞)) L2([1))中函数的一个有趣示例是 f ( x ) = 1 / x f(x)=1/x f(x)=1/x f f f的平方具有从 1 1 1 ∞ ∞ 的有限积分,尽管函数本身的积分是发散的。通过绕x轴旋转得到的形状称为加布里埃尔角,因为体积是有限的(与 f 2 f^2 f2的积分有关),而表面积是无限的(与 f f f的积分有关)。

在有限维向量空间中,内积可用于将一个函数投影到一个由正交函数基定义的新坐标系中。函数 f f f的傅里叶级数表示的是该函数在精确域上具有整数周期的正弦和余弦函数的正交集上的投影。这是以下各部分的主题。


傅里叶级数(Fourier series)

傅里叶分析的一个基本结果是,如果 f ( x ) f(x) f(x)是周期性的和分段光滑的,那么它可以写成一个傅里叶级数,它是一个频率增加的余弦和正弦的无穷和。特别地,如果 f ( x ) f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值