剑指 Offer 60. n个骰子的点数

该篇博客探讨了如何使用动态规划方法解决计算多个骰子投掷后点数总和出现概率的问题。通过正向递归的方式,博主详细解释了如何统计每个阶段的概率,并给出了具体的Java代码实现。示例展示了从1个骰子到2个骰子时的概率分布。
摘要由CSDN通过智能技术生成

剑指 Offer 60. n个骰子的点数

把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。

你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

示例 1:

输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
示例 2:

输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

限制:

1 <= n <= 11

在这里插入图片描述

核心:动态规划dp,正向递归,统计每一项f(n-1,i)对f(n,i+1)…f(n,i+6)产生的贡献

class Solution {
    public double[] dicesProbability(int n) {
    	//初始骰子为1时的概率
        double[] dp=new double[6];
        Arrays.fill(dp,1.0/6.0);
        for (int i = 2; i <= n; i++) {
        	//存放骰子为i个时各种情况的概率,tmp为n,则dp为n-1
            double[] tmp=new double[5*i+1];
            //因为n比n-1多了1个骰子,相当于n-1每一种数都加多了6种情况
            //比如n-1=1,n=2
            //n-1:1,2,3,4,5,6
            //n:前一位为n-1的6位数字2=1+1,3=1+2,4=1+3,5=1+4,6=1+5,7=1+6,因此每一位数字都多了6种情况
            //n-1的每一项都移动6次
            for (int j = 0; j < 6; j++) {
            	//n-1的每一项对n都产生了贡献
                for (int k = 0; k < dp.length; k++) {
                    tmp[j+k]+=dp[k]/6.0;
                }
            }
            //复制一份给dp
            dp=tmp;
        }
        return dp;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值