剑指 Offer 60. n个骰子的点数
把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。
示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]
限制:
1 <= n <= 11
核心:动态规划dp,正向递归,统计每一项f(n-1,i)对f(n,i+1)…f(n,i+6)产生的贡献
class Solution {
public double[] dicesProbability(int n) {
//初始骰子为1时的概率
double[] dp=new double[6];
Arrays.fill(dp,1.0/6.0);
for (int i = 2; i <= n; i++) {
//存放骰子为i个时各种情况的概率,tmp为n,则dp为n-1
double[] tmp=new double[5*i+1];
//因为n比n-1多了1个骰子,相当于n-1每一种数都加多了6种情况
//比如n-1=1,n=2
//n-1:1,2,3,4,5,6
//n:前一位为n-1的6位数字2=1+1,3=1+2,4=1+3,5=1+4,6=1+5,7=1+6,因此每一位数字都多了6种情况
//n-1的每一项都移动6次
for (int j = 0; j < 6; j++) {
//n-1的每一项对n都产生了贡献
for (int k = 0; k < dp.length; k++) {
tmp[j+k]+=dp[k]/6.0;
}
}
//复制一份给dp
dp=tmp;
}
return dp;
}
}