本题解署名:王胤皓
正文开始
题意
时间限制:1秒 内存限制:256M
题目描述
如果一个数字只由若干个不同的质数相乘得到,那么我们就称这个数字为“原初数”。本题中指的数字都是大于 1 1 1 的数字。
小可认为,原初数是一切数字的源头。当然,质数本身也是原初数。除了质数以外,比如 6 = 2 × 3 6=2\times 3 6=2×3, 42 = 2 × 3 × 7 42=2\times 3\times 7 42=2×3×7 等都是原初数。但是 12 = 2 × 2 × 3 12=2\times 2\times 3 12=2×2×3, 8 = 2 × 2 × 2 8=2\times2\times2 8=2×2×2 灯不是原初数。
例如 6 = 2 1 × 3 1 6=2^1\times3^1 6=21×31 如果有一个不是原初数的数字,只有 2 2 2 和 3 3 3 作为质因数,那么这个数字称为 6 6 6 的子数。比如 6 6 6 的子数有 12 、 24 、 36 12、24、36 12、24、36 等。但是 15 15 15 等数字不是 6 6 6 的子数。
但是数字是无穷的。于是小可决定把范围限制在 [ 2 , n ] [2,n] [2,n] 内。然后小可会在这个范围内给你 m m m 个数字。
如果小可给的数字是原初数,请从小到大输出这个原初数的子数有哪些。当然,这些子数都得在 [ 2 , n ] [2,n] [2,n] 的范围内。
如果小可给的数字不是原初数,那么输出这个数字的原初数。具体格式见输出描述和样例。
输入描述
第一行两个正整数 n , m n,m n,m,代表小可划定的范围为 [ 2 , n ] [2,n] [2,n],小可会在这个范围内给你 m m m个数字。
第二行 m m m 个正整数 a 1 , a 2 ⋯ , a m a_1,a_2\cdots,a_m a1,a2⋯,am,代表小可给你的 m m m 个数字。
输出描述
对于每个给定的数字,如果它是原初数,那么首先输出 A:
,然后输出这个数字的子数,从小到大排列。
如果这个数字不是原初数,那么首先输出 B:
,然后输出这个数字的原初数。
注意,冒号是英文冒号。冒号后面有一个空格。
每个给定的数字的输出占一行。具体情况参考样例。
样例输入
100 10
2 3 91 24 50 75 12 15 20 100
样例输出
A: 4 8 16 32 64
A: 9 27 81
A:
B: 6
B: 10
B: 15
B: 6
A: 45 75
B: 10
B: 10
提示
如果把原初数分解成质因数相乘的形式,可以发现,每个质数的指数都是 1 1 1。比如 10 = 2 1 × 5 1 10=2^1\times5^1 10=21×51。
子数就是在原初数的基础上,某些质因数的指数大于 1 1 1。比如 10 10 10 的子数有 2 3 × 5 1 , 2 2 × 5 4 2^3\times5^1,2^2\times5^4 23×51,22×54等等。
数据范围
对于 20 % 20\% 20% 的数据, 2 ≤ n ≤ 20 , 1 ≤ m ≤ 10 2\le n\le20,1\le m\le10 2≤n≤20,1≤m≤10。
对于另外 20 % 20\% 20% 的数据, 2 ≤ n ≤ 1000 , 1 ≤ m ≤ 1000 2\le n\le1000,1\le m\le1000 2≤n≤1000,1≤m≤1000。
对于另外 20 % 20\% 20% 的数据, 2 ≤ n ≤ 1 0 4 , 1 ≤ m ≤ 1 0 4 2\le n\le10^4,1\le m\le10^4 2≤n≤104,1≤m≤104。
对于另外 20 % 20\% 20% 的数据, 2 ≤ n ≤ 2 × 1 0 6 , 1 ≤ m ≤ 1000 2\le n\le2\times10^6,1\le m\le1000 2≤n≤2×106,1≤m≤1000。
对于另外 20 % 20\% 20% 的数据, 2 ≤ n ≤ 3 × 1 0 6 , 1 ≤ m ≤ 3 × 1 0 6 2\le n\le3\times10^6,1\le m\le3\times10^6 2≤n≤3×106,1≤m≤3×106。
对于 100 % 100\% 100% 的数据,保证小可给定的 m m m 个数字中的原初数的个数不超过 5 × 1 0 4 5\times 10^4 5×104。
思路
upd:这题我问的王弘毅老师,王弘毅老师把他代码中的 Euler
函数给我看了看,然后我想了想主函数的内容,然后就
AC
\colorbox{52C41A}{\color{white}{\texttt{AC}}}
AC 了。
这题卡的比较紧,稍不注意就会得到 TLE \colorbox{052242}{\color{white}{\texttt{TLE}}} TLE 的好成绩(作者经历了 1 1 1 次 OLE \colorbox{052242}{\color{white}{\texttt{OLE}}} OLE, 4 4 4 次 TLE \colorbox{052242}{\color{white}{\texttt{TLE}}} TLE, 2 2 2 次 MLE \colorbox{052242}{\color{white}{\texttt{MLE}}} MLE, 2 2 2 次 RE \colorbox{9D3DCF}{\color{white}{\texttt{RE}}} RE 和 2 2 2 次 WA \colorbox{E74C3C}{\color{white}{\texttt{WA}}} WA 才 AC \colorbox{52C41A}{\color{white}{\texttt{AC}}} AC 的)。
首先进行一遍欧拉筛,筛出质数,然后顺便打出每个数的原初数是多少:
- 如果这个数是质数,那么这个数的原初数就是这个数,所以 f i = i f_i=i fi=i。
- 在进行欧拉筛的时候,在遍历质数表的时候,加入一下语句:
- 在判断
i
m
o
d
p
r
i
m
e
j
=
0
i\bmod prime_j=0
imodprimej=0 的时候,那么
f
i
×
p
r
i
m
e
j
=
f
i
f_{i\times prime_j}=f_i
fi×primej=fi。
- 证明:因为 p r i m e j prime_j primej 是 i i i 的一个因数,所以不需要再乘,直接相等即可。
- 否则
f
i
×
p
r
i
m
e
j
=
f
i
×
p
r
i
m
e
j
f_{i\times prime_j}=f_{i}\times prime_j
fi×primej=fi×primej。
- 证明:因为 p r i m e j prime_j primej 不是 i i i 的一个因数,所以需要再乘,乘起来即可。
- 在判断
i
m
o
d
p
r
i
m
e
j
=
0
i\bmod prime_j=0
imodprimej=0 的时候,那么
f
i
×
p
r
i
m
e
j
=
f
i
f_{i\times prime_j}=f_i
fi×primej=fi。
进行完之后,用
3
×
1
0
6
3\times10^6
3×106 个 vector
存储原初数对应的这个原初数的 子数
,但是如果
f
i
=
i
f_i=i
fi=i,那么就说明这是个原初数,不统计。
主函数内:
先调用函数。
接下来
m
m
m 组:
如果
f
a
i
=
a
i
f_{a_i}=a_i
fai=ai,那么这个数是一个原初数,输出 A:
和
a
n
s
a
i
ans_{a_i}
ansai 的全部内容。
否则输出 B:
和
f
a
i
f_{a_i}
fai。
代码实现
#include<bits/stdc++.h>
using namespace std;
int n,m,cnt,pr[3000005],f[3000005];
bool vis[3000005];
vector<int> ans[3000005];
void Euler(int n){
for(int i=2; i<=n; i++){
if(!f[i]){
pr[cnt++]=i;
f[i]=i;
}
for(int j=0; j<cnt&&i*pr[j]<=n; j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0){
f[i*pr[j]]=f[i];
break;
}
f[i*pr[j]]=f[i]*pr[j];
}
}
for(int i=2; i<=n; i++){
if(f[i]==i) continue;
ans[f[i]].push_back(i);
}
}
int main(){
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(false);
cin>>n>>m;
Euler(n);
while(m--){
int a;
cin>>a;
if(f[a]==a){
cout<<"A: ";
for(int i=0; i<ans[a].size()&&ans[a][i]<=n; i++) cout<<ans[a][i]<<" ";
cout<<"\n";
}
else{
cout<<"B: ";
cout<<f[a]<<"\n";
}
}
return 0;
}
三连一下再走吧~