Numpy 的基本概念就是 ndarray 数组,所有属性和操作都是围绕它而来。
开始使用
一般公认的导入方法如下:
import numpy as np
常用属性
>>> a = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
>>> a.ndim # 维度
2
>>> a.shape # 数组形状
(2, 3)
>>> a.size # 元素个数
6
>>> a.dtype # 元素类型
dtype('float64')
>>> a.itemsize # 元素字节数
8
>>> a.T # 转置
array([[ 1., 4.],
[ 2., 5.],
[ 3., 6.]])
>>> a.flat # 返回 numpy.flatiter 对象,可迭代
<numpy.flatiter object at 0x7f97d9811800>
创建
从 list 或者 tuple
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
直接生成
指定 shape 和 dtype 生成。zeros 代表全是 0,ones 代表全是 1,empty 代表不初始化。
>>> a = np.zeros(shape=(2, 3), dtype=np.float64)
>>> a
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
>>> a = np.ones(shape=(2, 3), dtype=np.float64)
>>> a
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
复制别的 ndarry 的 shape 和 dtype 来创建。类似的,zeros_like 代表全部初始化为 0,ones_like 代表全部初始化为 1,empty_like 不初始化。
>>> b = np.zeros_like(a)
>>> a
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
指定 shape 来用随机数初始化。
>>> np.random.rand(2,3) # 0~1 均匀分布
array([[ 0.31119951, 0.84391927, 0.1113187 ],
[ 0.30782159, 0.67313418, 0.46963388]])
>>> np.random.randn(2,3) # 标准正态分布
array([[-2.25811477, -0.34537208, 1.34830224],
[-0.97916617, -1.17038121, -0.51444696]])
用序列,也就是起点,终点和步长,类似切片。
>>> np.arange(start=1, stop=7, step=1, dtype=np.float64).reshape(2,3)
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
>>> np.linspace(start=1, stop=4, num=6, endpoint=True, dtype=np.float64) # 均分
array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ])
>>> np.logspace(start=1, stop=4, num=6, endpoint=True, dtype=np.float64, base=10.0) # 等比数列
array([ 10. , 39.81071706, 158.48931925, 630.95734448,
2511.88643151, 10000. ])
使用生成函数。
>>> np.fromfunction(lambda i, j:i+j, (2, 3), dtype=np.float64)
array([[ 0., 1., 2.],
[ 1., 2., 3.]])
从文件读取
>>> np.save("a.npy", a)
>>> b = np.load("a.npy")
>>> b
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
基本操作
查
直接用位置或者通过条件来索引。
>>> a
array([[ 1., 2., 3.],
[-4., -5., -6.]])
>>> a[1,1]
-5.0
>>> a[1, 0:1]
array([-4.])
>>> a[1, :]
array([-4., -5., -6.])
>>> a[1, ...] # 除了第一个纬度是 1,其他纬度都可以
array([-4., -5., -6.])
>>> a[[1, 0], :]
array([[-4., -5., -6.],
[ 1., 2., 3.]])
>>> a[a<0] # bool 索引
array([-4., -5., -6.])
改
对上面索引到的位置赋值。
>>> a
array([[ 1., 2., 3.],
[-1., -1., -1.]])
>>> a.flat[1:2] = 5
>>> a
array([[ 1., 5., 3.],
[-1., -1., -1.]])
拼接
>>> b
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a
array([[ 1., 5., 3.],
[-1., -1., -1.]])
>>> np.concatenate([a, b], axis=0) # 沿垂直方向拼接
array([[ 1., 5., 3.],
[-1., -1., -1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> np.concatenate([a, b], axis=1) # 沿水平方向拼接
array([[ 1., 5., 3., 1., 1., 1.],
[-1., -1., -1., 1., 1., 1.]])
np.vstack([x,y])
,np.hstack([x,y])
,np.dstack([x,y])
分别对应 axis 等于 0,1,2。
分割
指定索引编号分割。
np.array_split(a, [1,3], axis=0)
指定纬度,均等分。np.vsplit()
,np.hsplit()
,np.dsplit()
。
复制
分成浅度复制和深度复制,区别就是有没有独立的内存。
b = a.view() # 浅度复制
b = a.copy() # 深度复制
计算
这里主要掌握广播,所谓广播就是要么相同形状,要么某一个维度上相同,要么只有一个数字扩展成一个维度。
>>> a
array([[ 2., 10., 6.],
[ -2., 12., -2.]])
>>> a*a
array([[ 4., 100., 36.],
[ 4., 144., 4.]])
>>> a+1
array([[ 3., 11., 7.],
[ -1., 13., -1.]])
>>> a*=2
>>> a
array([[ 4., 20., 12.],
[ -4., 24., -4.]])
利用内置函数来广播。
>>> a
array([[ 4., 20., 12.],
[ -4., 24., -4.]])
>>> np.exp(a)
array([[ 5.45981500e+01, 4.85165195e+08, 1.62754791e+05],
[ 1.83156389e-02, 2.64891221e+10, 1.83156389e-02]])
>>> np.max(a)
24.0
线性函数相关。
>>> a
array([[ 4., 20., 12.],
[ -4., 24., -4.]])
>>> b = b.T
>>> b
array([[ 1., -1.],
[ 5., 7.],
[ 3., -1.]])
>>> a.dot(b)
array([[ 140., 124.],
[ 104., 176.]])