Pcap 文件 pcap 文件是常用的数据报存储格式,可以理解为就是一种文件格式。Pcap 文件格式1. Pcap Header文件头,每一个pcap文件只有一个文件头,总共占24(B)字节,以下是总共7个字段的含义。 Magic(4B):标记文件开始,并用来识别文件和字节顺序。 值可以为0xa1b2c3d4或者0xd4c3b2a1, 如果是0xa1b2c3d4表示是大端模式,按照原来的顺序一个字节一个字节的读, 如.
python 队列&优先队列 队列定义:import queue q = queue.Queue()进队列: q.put(x)出队列: y = q.get()队列元素个数: len = q.qsize()例子:import queueq = queue.Queue()q.put(3)q.put(1)q.put(4)q.put(1)q.put(5)q.put(9)print('len = ', q.qsize())while not q.empty():
洛谷刷题记录(python)【算法1-2】排序 【算法1-2】排序 - 题单 - 洛谷https://www.luogu.com.cn/training/107#problems【深基9.例1】选举学生会 - 洛谷n, m = map(int, input().split())a = [int(i) for i in input().split()]a.sort()for i in a: print(i, end=' ')【模板】快速排序 - 洛谷n = int(input())a = [int(i) for i i
CICFlowMeter解析pcap文件 1. 安装WinPcap2. 下载CICFlowMeter3. 解压文件打开bin目录下/bin/CICFlowMeter.bat,选择离线模式出现如下界面点击ok ,示例:在文件夹对应位置,查看到输出的csv文件
Pytroch 深度学习 跑CIFAR10数据集 CPU跑from torch.utils.tensorboard import SummaryWriter#from model import *import torchvisionfrom torch import nnfrom torch.utils.data import DataLoader# 准备数据集train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchv.
【PyTorch教程】pytorch入门系列 ——土堆教程的目录及索引 原作者为: nemo_0410原作链接【PyTorch教程】pytorch入门系列 ——土堆教程的目录及索引_nemo_0410的博客-CSDN博客_pytorch 土堆https://blog.csdn.net/weixin_42306148/article/details/123754540?spm=1001.2014.3001.5501目录P6-P7 数据加载P8-9 Tensorboard使用 P10-11 Transform的用法 P12-13 常用的tranforms P..
华为研发工程师编程题 import math while 1: n = int(input()) if n == 0: break cnt = 0 num = n left = 0 while (num > 0): if num == 1: print(cnt) break if num == 2: print(cnt + 1) ...
K-means聚类算法 K-means聚类算法K-means聚类步骤1、随机设置K个特征空间内的点作为初始的聚类中心2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程APIsklearn.cluster.KMeans(n_clusters=8, init='k-means++') k-means聚类 n_clust
逻辑回归算法 逻辑回归 分类算法逻辑回归核心思想利用现有数据对分类边界建立回归方程,以此进行分类。优点: (1)训练速度较快,分类的时候,计算量仅仅只和特征的数目相关; (2)简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响; (3)适合二分类问题,不需要缩放输入特征; (4)内存资源占用小,因为只需要存储各个维度的特征值;缺点: (1)不能用Logistic回归去解决非线性问题,因为Logistic的决策面试线性的; (2)...
线性回归——波士顿放假预测 线性回归线性回归核心思想:利用最小二乘函数对一个或多个自变量之间关系进行建模的方法,预测回归问题。优点: (1)思想简单,实现容易。建模迅速,对于小数据量、简单的关系很有效; (2)是许多强大的非线性模型的基础。 (3)线性回归模型十分容易理解,结果具有很好的可解释性,有利于决策分析。 (4)蕴含机器学习中的很多重要思想。 (5)能解决回归问题。缺点: (1)对于非线性数据或者数据特征间具有相关性多项式回归难以建模. (2)难以很好地表达高...
腾讯2017暑期实习生编程题 1/3[编程题]构造回文(LCS)时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 32M,其他语言64M给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串。如何删除才能使得回文串最长呢?输出需要删除的字符个数。输入描述:输入数据有多组,每组包含一个字符串s,且保证:1<=s.length<=1000.输出描述:对于每组数据,输出一个整数,代表最少需要删除的字符个数。输入例子1:abcdagoogl.
zzu打卡 1. 环境准备1) python环境2) webdriver库3) chrome浏览器4) chromedriver并配置环境 参考chromedriver配置2. 脚本代码from selenium import webdriverimport randomfrom time import sleep# 选择Chrome浏览器driver = webdriver.Chrome()# 这是我学校的打卡网页,需自行修改driver.get("https...
集成学习方法之随机森林 随机森林算法集成学习集成学习通过建立几个模型组合来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和做出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。随机森林算法核心思想机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机 + 森林(包含多个决策树的分类器)N个样本,每个样本有M个特征。随机 两个随机 训练集随机 - N个样本中随机有放回的抽样N个
决策树算法 决策树算法决策树核心思想:决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。优点:理解和解释简单可视化 - 可解释能力强缺点:容易产生过拟合改进:剪枝cart算法(决策树API中已实现,
朴素贝叶斯 朴素贝叶斯核心思想:朴素(特征之间相互独立) + 贝叶斯算法优点:1. 对缺失数据不太敏感,算法也比较简单,常用于文本分类。2. 分类准确度高,速度快。3. 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。缺点:由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。使用场景:文本分类、垃圾文本过滤、情感判别、多分类实施预测、推荐系统scikit-learn中的3种不同类型的朴素贝叶斯1. 高斯分布型 GaussianNB
K-近邻算法(KNN) KNN核心思想: 你的"邻居"来推断出你的类别如果取的最近的电影数量不一样?会是什么结果? k 值取得过小,容易受到异常点的影响 k 值取得过大,样本不均衡的影响APIsklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto') n_neighbors:k值 algorithm:{'auto', 'ball_...
特征工程笔记 特征工程:特征工程的目的,是通过一系列的工程活动,将这些信息使用更高效的编码方式(特征)表示。使用特征表示的信息,信息损失较少,原始数据中包含的规律依然保留。此外,新的编码方式还需要尽量减少原始数据中的不确定因素(白噪声、异常数据、数据缺失…等等)的影响。1. 特征提取sklearn.feature_extractionfrom sklearn.feature_extraction import***1. 1 字典特征提取字典特征提取 - 类别 -> one-hot编
洛谷P1605 迷宫(Python搜索) P1605 迷宫 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1605n, m, t = map(int, input().split())sx, sy, fx, fy = map(int, input().split())sx -= 1sy -= 1fx -= 1fy -= 1ans = 0dir = [[1, -1, 0, 0], [0, 0, 1, -1]]mp = []vis = []
洛谷P1162 填涂颜色(Python搜索) P1162 填涂颜色https://www.luogu.com.cn/problem/P1162题目描述由数字00组成的方阵中,有一任意形状闭合圈,闭合圈由数字11构成,围圈时只走上下左右44个方向。现要求把闭合圈内的所有空间都填写成22.例如:6 \times 66×6的方阵(n=6n=6),涂色前和涂色后的方阵如下:0 0 0 0 0 00 0 1 1 1 10 1 1 0 0 11 1 0 0 0 11 0 0 0 0 11 1 1 1 1 10 0 0 0 0 00
Matplotlib学习笔记 学习笔记参考:Matplotlib | 走在小路上 (hwl.cool)介绍Matplotlib 是专门用于开发2D图表(包括3D图表)的python库对应的JS库有D3(opens new window)echarts官网:Matplotlib(opens new window)三层结构容器层画板层Canvas 画布层Figure 绘图层/坐标系辅助显示层图像层折线图 plot以折线的上升或下降来表示统计数量的增减变化的统计图特点:能够显示数据的变..