机器学习逻辑回归总结

一.逻辑回归的定义

逻辑回归是一种广义的线性模型,用于二分类问题,其预测函数构h(x)造如下:
Sigmoid函数,函数形式为:
Sigmoid函数
这里写图片描述
这里写图片描述

二.构造损失函数:

这里使用的是对数损失函数,它是基于最大似然估计推导的:
这里写图片描述
注意:不使用平方损失函数的原因是此时代价函数是非凸函数,存在多个极小值,不适合求解

三.参数更新过程:

这里使用的是梯度下降法来更新参数,过程如下:
这里写图片描述
注意:其中一步使用了g(z)函数的一个性质:g(z)的导数=g(z)(1-g(z))

四.正则化:

正则化是为了解决过拟合的影响,正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项或惩罚项。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化项就越大。

注意:J()有点错误,前面部分应该是对数损失函数,后面部分系数加上除以2m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值