On a N x N
grid of cells, each cell (x, y)
with 0 <= x < N
and 0 <= y < N
has a lamp.
Initially, some number of lamps are on. lamps[i]
tells us the location of the i
-th lamp that is on. Each lamp that is on illuminates every square on its x-axis, y-axis, and both diagonals (similar to a Queen in chess).
For the i-th query queries[i] = (x, y)
, the answer to the query is 1 if the cell (x, y) is illuminated, else 0.
After each query (x, y)
[in the order given by queries
], we turn off any lamps that are at cell (x, y)
or are adjacent 8-directionally (ie., share a corner or edge with cell (x, y)
.)
Return an array of answers. Each value answer[i]
should be equal to the answer of the i
-th query queries[i]
.
Example 1:
Input: N = 5, lamps = [[0,0],[4,4]], queries = [[1,1],[1,0]]
Output: [1,0]
Explanation:
Before performing the first query we have both lamps [0,0] and [4,4] on.
The grid representing which cells are lit looks like this, where [0,0] is the top left corner, and [4,4] is the bottom right corner:
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
1 1 1 1 1
Then the query at [1, 1] returns 1 because the cell is lit. After this query, the lamp at [0, 0] turns off, and the grid now looks like this:
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1
Before performing the second query we have only the lamp [4,4] on. Now the query at [1,0] returns 0, because the cell is no longer lit.
Note:
1 <= N <= 10^9
0 <= lamps.length <= 20000
0 <= queries.length <= 20000
lamps[i].length == queries[i].length == 2
This problem is similar with Count Pairs of attacking bishop pairs. We can use the same approach to uniquely represent a line of slope 1 or -1 on the edge grids. A simpler way to uniquely represent all lines with 1 or -1 slope is as following.
For a give grid (x, y), the unique key for positive 1 slope line is x + y and the unique key for negative 1 slope line is x - y.
class Solution { class Point { int x, y; Point(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { long code = 31 * x + 37 * y; return (int)(code % Integer.MAX_VALUE); } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null || getClass() != obj.getClass()) { return false; } Point p = (Point) obj; if (x != p.x || y != p.y) { return false; } return true; } } private Set<Point> lampSet = new HashSet<>(); private Map<Integer, Integer> horizontal = new HashMap<>(); private Map<Integer, Integer> vertical = new HashMap<>(); private Map<Integer, Integer> posMap = new HashMap<>(); private Map<Integer, Integer> negMap = new HashMap<>(); public int[] gridIllumination(int N, int[][] lamps, int[][] queries) { for(int i = 0; i < lamps.length; i++) { lampSet.add(new Point(lamps[i][0], lamps[i][1])); horizontal.put(lamps[i][0], horizontal.getOrDefault(lamps[i][0], 0) + 1); vertical.put(lamps[i][1], vertical.getOrDefault(lamps[i][1], 0) + 1); posMap.put(lamps[i][0] + lamps[i][1], posMap.getOrDefault(lamps[i][0] + lamps[i][1], 0) + 1); negMap.put(lamps[i][0] - lamps[i][1], negMap.getOrDefault(lamps[i][0] - lamps[i][1], 0) + 1); } int[] results = new int[queries.length]; for(int i = 0; i < queries.length; i++) { if(horizontal.getOrDefault(queries[i][0], 0) > 0 || vertical.getOrDefault(queries[i][1], 0) > 0 || posMap.getOrDefault(queries[i][0] + queries[i][1], 0) > 0 || negMap.getOrDefault(queries[i][0] - queries[i][1], 0) > 0) { results[i] = 1; } turnOffLamp(queries[i][0], queries[i][1]); } return results; } private void turnOffLamp(int x, int y) { for(int i = -1; i < 2; i++) { for(int j = -1; j < 2; j++) { Point p = new Point(x + i, y + j); if(lampSet.contains(p)) { horizontal.put(x + i, horizontal.get(x + i) - 1); vertical.put(y + j, vertical.get(y + j) - 1); posMap.put(x + i + y + j, posMap.get(x + i + y + j) - 1); negMap.put(x + i - y - j, negMap.get(x + i - y - j) - 1); lampSet.remove(p); } } } } }